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1. INTRODUCTION

Visual odometry(VO) is the process of estimating the 

motion of a camera using the image sequence. The image 

sequence can be generated from a single vision (single or 

omnidirectional camera), stereo vision or multi-camera 

system. Many researchers around the world have been 

trying to develop the best motion estimation system 

possible. Some criteria such as low cost, computation 

time, simplicity of the algorithm, and whether it works in 

dynamic environments can be used to evaluate whether 

a visual odometry system is well-developed or not. Many 

algorithms were successfully produced to be applied in 

real-time urban environments (Parra et al. 2008, Tardif 

et al. 2008, Scaramuzza et al.2008). Using stereo vision 

systems or multi-camera systems, we can directly estimate 

the rotation and translation of the camera. However, the 

computation time and expense drawbacks of using more 

than one camera. Many algorithms using these systems can 
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still only work off-line or at a low frame-rate because of the 

computation time. So our work mainly focuses on a single 

camera.

In stereo vision, the scale ambiguity will be removed, 

and both rotation and translation can be directly computed 

from stereo frames (Howard 2008). An iterated sigma point 

Kalman filter was employed to combine with a Ransac-

based outlier rejection scheme to robustly estimate vehicle 

motion in dynamic environments (Kitt et al. 2010). The 

stereo features were separated into two groups based on 

their usefulness (Kaess et al. 2009), with one group used to 

recover rotation using two-point Ransac, and another used 

to recover translation using one-point Ransac. An upgrade 

(Golban et al. 2012) significantly improves the existing VO 

algorithms by using the rank transform to change the image 

illumination, and proposing a new consistency check to 

reliablyremove outliers.

In single vision based visual odometry, the omnidirectional 

Ladybug camera was used to produce a VO application in 

urban environments (Tardif et al. 2008), with distance up 

to 2.5 kilometers. He adopted a 5-point preemptive Ransac 

to estimate motion. Scaramuzza & Fraundorfer (2009) also 

used an omnidirectional camera system and proposed the 

lowest Ransac model, called 1-point Ransac, to estimate 
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motion. Scale ambiguity in single vision is also strictly 

solved (Kitt et al. 2011, Scaramuzza et al. 2009).

Ransac (Fischler et al. 1981) has been established 

as the standard method for motion estimation in the 

presence of outliers. Ransac works by generating model 

hypotheses from randomly minimal sample datasets and 

verifying them on the whole datasets. The hypothesis that 

shows the highest consensus with other data is selected 

as the correct solution.  The limitation of Ransac is that 

it requires exponentially more iterations depending on 

the number of points required to generate a hypothesis. 

As such, using so many iterations will slow down the 

Ransac algorithm. For this reason, there is a high interest 

in using a minimal parameterization of the Ransac model. 

As we know, six degrees of freedom (DOF) motion can 

be estimated from a minimum of five correspondences. 

Several 5-point minimal solvers were proposed (Triggs 

2000, Nister 2003). Later, some attempts were conducted 

to reduce the number of necessary motion parameters. A 

new minimal Ransac method was proposed (Naroditsky 

et al. 2012), the three-plus-one method, to compute the 

relative pose in monocular visual odometry by using three 

image correspondences and a common direction. Using 

this four-point Ransac, they also give a successful 6DOF 

VO. A two-point Ransac was presented to recover rotation 

and a one-point Ransac to recover translation (Kaess et 

al. 2009). In the case of planar motion assumption, a one-

point minimal Ransac solver was proposed (Scaramuzza et 

al 2009). Performance evaluations of five-, two-, and one-

point Ransac algorithms were also shown by Scaramuzza 

(2011). As another approach to 1-point Ransac, a novel 

combination of Ransac plus Extended Kalman Filter was 

presented (Civera et al. 2010), which uses the available 

prior probabilistic information from the EKF in the Ransac 

hypothesis stage.

In this paper, we concentrate on solving the extremely 

difficult challenges in visual odometry such as high amount 

of computation time, complexity of the algorithm and 

the fact that it doesn’t work in urban environments. Our 

contribution is that we employ a 1-point method to improve 

the Ransac algorithm and the relative motion estimation. 

We combine this 1-point method with the iterative 

estimation method to generate a lowest Ransac model, 

which is also called 1-point Ransac. This Ransac contributes 

two important gains: the first is removing all outliers on 

moving objects, which helps our algorithm to be applied 

in urban environments without considering the effect of 

moving objects in motion estimation. The second is using 

the smallest number of necessary iterations corresponding 

to 1-point but still guaranteeing that a correct solution can 

be computed, which helps our algorithm to remarkably 

reduce computation time. In addition, in the motion 

estimation algorithm, by combining the 1-point method 

with a simple least-squares linear solution, the complexity 

of our algorithm is reduced. Furthermore, our algorithm 

can deal with situations in which just a few feature points 

are present, unlike many algorithms, which can fail due an 

insufficient number of points. The paper will proceed as 

follows: In Part II, we focus on describing every step of our 

proposed VO algorithm in detail. Finally, in Parts III and IV, 

we present our experimental results and conclusions.

2. PROPOSED VISUAL ODOMETRY 
ALGORITHM

In this section, we detail each step of our proposed visual 

odometry algorithm as shown in Fig. 2.

2.1 Feature detection and matching

Curently, SIFT (Lowe 2004) and SURF (Bay et al. 2006) 

are widely used in visual odometry. We tested both SIFT 

and SURF, and found that the latter performed better. 

Our experiments proved that, with the same data and 

parameters, the trajectories resulting from SURF could fit 

the ground truth better than the trajectories resulted from 

SIFT. This is most likely because of SURF detector can 

Fig. 2. Flowchart of our proposed visual odometry algorithm.
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extract more reliable, robust and invariant feature points. 

We utilized a traditional approach for SURF matching, 

which was computing the squared Euclidean distance 

between SURF descriptor vectors. However, we made an 

improvement to increase the matching accuracy and to 

reduce the searching time. We constrain our searching 

space for finding correspondences. For every feature point 

on the previous image, we define a square region on the 

current image that is within a relatively high distance of 50 

pixels to the epipolar line. To find its correspondence in the 

current image, instead of searching all points on the whole 

current image as in the original matching algorithms, we 

just searched in the defined region. In this paper, the SURF 

descriptor vectors with the smallest Euclidean distance 

are temporarily considered as the corresponding features. 

Although the descriptors-based feature matching is 

reliable, false correspondences are still unavoidable. So we 

added more constraints in order to improve the matching 

precision.

  Uniqueness constraint: one feature can only match with 

   another one.

  Threshold of Euclidean distance: a correspondence can 

   be accepted if its vector distance or score is less than a

   threshold, which was set to 1 in all our experiments.

  Distance constraint: for two different correspondences

   p1 ↔ p’1 and p2 ↔ p’2, the distance between p1 and p2 should

   be almost the same to as distance between p’1 and p’2.

2.2 Outlier removal algorithm

After performing the first step, we get a set of correspondences 

between 2 consecutive images. But this set also includes some 

false correspondences. The possible reasons for outliers are 

illumination, image blur, change in view or image noise. Such 

outliers can cause significant error in motion estimation. 

Currently, the most common method used to remove outliers 

is Ransac. Most of the current Ransac algorithms have the 

shortcoming of significantly increasing the computational cost, 

because so many iterations are used that it slows down the VO 

algorithm. For this reason, it is extremely important to find the 

minimal Ransac model. The number of iterations needed to 

guarantee a correct solution is measured as follows (Bay et al. 

2006):

 (1)

where, p is the probability of success, ε is the percentage 

of outliers, and s is a randomly selected number of 

points. By assuming that ε=50% and p = 99%, we arrive at 

Table 1, which shows the number of necessary iterations 

corresponding to the chosen set of correspondences.

As shown in Table 1, the minimal number of necessary 

iterations is 7, which corresponds to using only 1 point. This 

is the lowest model parameterization possible and results 

in the Ransac algorithm that is the most efficient, and 

that reduces the computational time to the shortest time 

possible. For this reason, we adopt the 1-point method and 

Ransac, also known as 1-point Ransac (Scaramuzza et al. 

2009), using the constraints of circular planar motion. Most 

of the streets in urban environments are approximately 

planar, and thus we can consider the motion of a camera 

as planar motion. Furthermore, according to Ackermann’s 

steering principle (Siegwart & Nourbakhsh 2004), a point, 

known as Instantaneous Center of Rotation (ICR), must exist 

around each wheel so that the vehicle can follow a circular 

motion. Thus, we can describe the motion of a camera as 

circular motion.

Generally, more than 5 correspondences are needed 

to estimate 6-DOF motion between two images. But if we 

assume that the motion of the camera is similar to planar 

motion, the two relative poses can be represented by three 

unknowns (3DOF). As shown in Fig. 1 to find the relative 

motion between two consecutive positions Ok+1 and Ok+1, 

we need to estimate 3 unknown parameters [Φ, θ, ρ], where 

Φ is moving direction, ρ is scale and θ is rotation on the 

2D plane. Moreover, using the benefit of circular motion, 

we add one additional constraint, which is θ = 2Φ. Finally, 

we just need to estimate 2 unknowns: rotation angle θ and 

scale ρ. We will describe how to get scale later. In the 1-point 

Ransac algorithm, we temporarily set scale at 1, and thus 

only θ needs to be estimated.

In planar motion, the vehicle always keeps a constant 

distance from the road when moving. We consider that 

the camera frame axes are parallel to the ground plane. So, 

based on the above constraints, the rotation and translation 

of the camera are represented as follows:

Table 1. Number of necessary iterations.

Number of points Number of iterations
1
2
3
4
5
6
7
8

7
16
34
71

145
292
587

1177
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(2)

From a 3D point in space, we set p’ and pas its corresponding 

image coordinates in the previous image and current image, 

respectively. Their nomalized coordinates P’=[x’, y’, z’]T and 

P=[x, y, z]T will be computed as follows:

 (3)

where, K is the calibration matrix.

Using the epipolar constraint, the defining equation for 

the essential matrix is:

                  (4)

where, E is defined as [T]
x
R and [T]

x
 is the skew symmetric 

matrix of T.

Using Eqs. (2), (3) and (4), we obtain the homogeneous 

equation as follows:

 (5)

Finally, we can compute the rotation angle from Eq. (5) as:

 
(6)

From Eq. (6), we can see that the rotation between 

two relative positions can be estimated by using only one 

correspondence. We call this method the 1-point method, 

and this method will become very useful in cases where 

only several feature points, or even one feature point, are 

present. The equations above are valid only when the 

position of the camera must satisfy Ackermann’s principle 

that requires the camera to be mounted along the back-

wheel axis of the car and the front-side axis of the camera to 

be perpendicular to it. In practice, however, cars moving in 

on-road environments have a small steering angle, which 

results in a big radius of curvature. Thus we can place the 

camera anywhere on the car and satisfy the requirement 

that its front-side axis be perpendicular to the back-wheel 

axis.

Continuously, by applying the 1-point method above, 

we can parameterize the lowest Ransac model, which is 

known as 1-point Ransac. Firstly, in each Ransac iteration, 

by selecting a correspondence randomly, we compute the 

rotation angle θ between two relative positions using Eq. (6). 

Secondly, we calculate the fundamental matrix (referred to 

as a hypothesis):

 (7)

Finally, we check all remaining correspondences 

and verify them as inliers if they satisfy the computed 

hypothesis. To do this, for each remaining correspondence, 

we employ the Levenberg-Marquardt method to minimize 

the following geometric error cost function given the 

calculated hypothesis and a correspondence:

 (8)

subject to =0. Where, , p are the given corresponding 

feature points on camera images.  are the projected points 

on images, respectively.

We verify a correspondence as an inlier if the reprojection 

errors  and  are less than 1. For feature points 

on moving objects, their reprojection errors will be very 

large, so most of those points will be verified as outliers 

and are removed. Therefore our algorithm can be applied 

in urban environments without considering the effect of 

moving objects.

Fig. 1. Motion relation between two consecutive positions under planar 
motion assumption and Ackermann's principle.
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2.3 Rotation estimation

This step is a process to estimate the rotation angle 

between two consecutive positions. As shown in Eq. (6), 

we can acquire the rotation angle θ by using only one 

correspondence. However, the question is how to estimate 

the rotation angle if there is more than one correspondence. 

To solve this problem, we combine the 1-point method with 

a least-squares solution of homogeneous equation. From 

Eq. (5), we arrive at the following homogeneous equation:

 (9)

where,  is an unknown variable and n is the 

number of correspondences.

The problem in Eq. (9) is corresponding to find X that 

minimizes , subject to =1. So we employ a simple 

least-squares minimization solution, based on Singular 

Value Decomposition (SVD) algorithm, to minimize the cost 

function as follows:

 (10)

where, D
i
 is the i-th row of A. Finally, θ will be obtained 

from:

 (11)

Above, we show how to combine the 1-point method with 

a least-squares solution to estimate the rotation between 

two relative images based on a simple linear solution. If 

there is only one correspondence, Eq. (9) will be become 

Eq. (6) and we will only use a 1-point method to find the 

rotation angle. If there is more than one correspondence, 

Eq. (10) will be used to find the most optimal rotation angle. 

Generally, the higher the number of correspondences, the 

more accurate the rotation estimation is.

2.4 Scale measure

Single vision is simpler and less expensive than stereo 

vision, but it unavoidably suffers from scale ambiguity. This 

is the most extreme limitation of monocular-based motion 

estimation. A simple approach to solving scale ambiguity is 

using additional sensors such as GPS or IMU. In our system, 

to reduce the complexity of the algorithm and decrease 

the computation time, we use an additional speed sensor 

to read the speed of a vehicle through CAN bus. Thus the 

vehicle scale will be calculated as ρ=v∆t, where v is the 

vehicle speed and ∆t is time difference.

2.5 Bundle Adjustment

This step is a process to refine the egomotion estimation. 

Bundle Adjustment is a non-linear minimization problem 

providing a maximum likelihood estimate. In our VO 

application, we employ a Bundle Adjustment algorithm to 

minimize reprojection error given a set of corresponding 

pairs to optimize the rotation and translation. 

The problem we want to solve can be formulated as 

follows:

 (12)

where, f( )is the transformation function that 

projects a 3D point into pixel  on the previous image. A 

set of matched point pairs ( ) is given and is filtered 

out from the 1-point Ransac. 

To minimize the non-linear least-squares problem in 

Eq.(12), we used the Levenberg-Marquardt algorithm. This 

algorithm requires an initial guess for R and T. It can achieve 

a fast convergence to the minimum estimate based on a 

good initial guess. As an initial guess, we used the linear 

solution in Eq. (10) to provide the initial rotation, and used 

scale from vehicle sensors to provide the initial translation. 

2.6 Motion integration

Motion integration is a process of computing the absolute 

egomotion of the current position to the initial position 

using the rotation θ and the scale ρ estimated above. We 

define z-axis as directed to the front side of camera, which 

x-axis is horizontally directed to the right side of camera. 

The odometry pose  at the k-th position in planar 

motion (3DOF) will be computed as follows:

 (13)
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3. EXPERIMENTS

3.1 Comparison with 2-point Ransac

In this section, we evaluate the performance of our 

1-point Ransac with the 2-point Ransac. The evaluation 

was done by comparing computation time and estimation 

accuracy. Two images were acquired at two different 

positions with scale of 1 meter. We tested the accuracy of 

rotation estimation on {1,3,5}-degree rotation. This range 

of scale and rotation θ in this simulation was obtained 

based on what we experienced with the real data from our 

experiments. At 10Hz image capture rate we saw that the 

biggest rotation is less than 5 degrees. According to the 

settings above, the relative pose between two positions is:

  (14)

To obtain statistically meaningful results, we executed two 

Ransac algorithms 500 times.

Computation time and error of estimated rotation θ 

were represented in Tables 2, 3, 4. As a result, it was found 

that computation time for the 1-point Ransac was greatly 

smaller than computation time for the 2-point Ransac. 

This is true because, as analyzed in Part II, the number of 

required iterations of 1-point Ransac is smaller than those 

of 2-point Ransac. In terms of rotation estimation, the 

estimated rotation using 2-point Ransac was better than 

the estimated rotation using 1-point Ransac. At this point, 

the reader may be wondering why 2-point Ransac performs 

better than 1-point Ransac. The reason is that 1-point 

Ransac assumes the motion of the camera as a circular 

motion,which is just the approximately real motion of the 

camera according to Ackermann’s principle. Also, 1-point 

Ransac just uses one correspondence while 2-point Ransac 

uses two correspondences to estimate motion. Nevertheless 

we can realize that errors of estimated rotation using 

1-point Ransac were not big and we can accept these errors. 

Particularly in cases where the vehicle is straightly moving 

or slightly turning, errors of estimated rotation using 1-point 

Ransac were very small, as shown in Tables 2 and 3.  In 

summary, using 1-point Ransac can reduce computation 

time significantly compared to other Ransac algorithms. 

Furthermore, its smallest model parameterization allows us 

to deal with situations in which only one correspondence is 

present.

3.2 Experiments on real image sequences

Our experiments were performed on a real car equipped 

with a Bumblebee2 camera, a speed sensor, and a GPS-

RTK/INS system. The Bumblebee camera and speed sensor 

were used to provide image sequence and vehicle speed, 

respectively. We just used left-side images whose resolution 

was 640x480 at 10Hz capture rate. The car speed ranged 

between from 0 to 65 km/h. The GPS device was used 

to provide the reference trajectory with a highly precise 

accuracy, up to sub-meter. The dataset was taken in real 

traffic in Seoul city. As such, many moving objects such 

as cars, bus, pedestrians were present. We tested on two 

different sequences. The results are shown in Figs. 3, 4. In 

both figures, the top shows the GPS reference trajectory on 

Google Earth, the middle shows the comparison between 

our estimated VO trajectory (red) and the reference 

trajectory (green) given by the GPS-RTK/INS system, 

and the bottom shows the number of inliers detected by 

our 1-point Ransac. Observing on two experiments, the 

estimated trajectory was well fitted with the reference 

trajectory. When the car is straightly moving or slightly 

turning, we have many inliers, up to several hundreds. In 

special cases when the car is significantly turning, there are 

just several inliers occurring, even only one inlier, as shown 

in Fig. 5. However, our VO algorithm can recover an accurate 

result in those cases. To evaluate the accuracy of visual 

odometry, we measured RMS error and drift error at the 

ending position over the total distance as shown in Table 5. 

As a result, we found that the estimated VO trajectories were 

similar to the trajectories given by GPS-RTK/INS system and 

the drift errors are small, and these results demonstrate the 

reliable effectiveness of our proposed VO algorithm.

Table2.  Computation time of Ransac algorithms and error of estimated 
rotation with respect to true rotation (1 degree).

1-point Ransac 2-point Ransac

Computation time (s)
Rotation error (deg)

0.4656
 0.043 

1.502
 0.175 

Table3.  Computation time of Ransac algorithms and error of estimated 
rotation with respect to true rotation (3 degrees).

1-point Ransac 2-point Ransac

Computation time (s)
Rotation error (deg)

0.2947 
0.191 

0.8827
0.025 

Table4.  Computation time of Ransac algorithms and error of estimated 
rotation with respect to true rotation (5 degrees).

1-point Ransac 2-point Ransac

Computation time (s)
Rotation error (deg)

0.1706 
0.794 

0.5397 
 0.196
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4. CONCLUSIONS

In this paper, we propose a robust and efficient visual 

odometry algorithm that can be reliably applied in urban 

environments. Using the planar motion assumption 

and Ackermann’s steering principle,  we adopted a 

1-point method to improve the Ransac algorithm and 

the relative motion estimation. 1-point Ransac allows us 

to significantly reduce computation time and provides 

an accurate estimated rotation with small error. Also, in 

motion estimation, we employ a 1-point method to provide 

a simple linear solution that helps reduce the complexity 

of our VO algorithm. Our motion estimation algorithm can 

deal cases in which only a few points are present, unlike 

Fig. 3. Experiment on the 1st sequence. Top shows trajectory in the city 
on a Google Map. Middle shows the result of our VO trajectory (red), 
compared to the reference trajectory (green) given by the GPS-RTK/INS 
system. Bottom shows the number of detected inliers.

Fig. 4. Experiment on the 2nd sequence. Top shows trajectory in the city 
on a Google Map. Middle shows the result of our VO trajectory (red), 
compared to the reference trajectory (green) given by the GPS-RTK/INS 
system. Bottom shows the number of detected inliers.

Table5.  This table shows drift error and RMS error in position for two 
sequences.

Sequence Distance (m) Drift error (%) RMS (m) images
1
2

940.0706
789.0895

1.43
0.63

9.12
5.75

463
478
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many algorithms, which can fail when there are not enough 

points. Our VO algorithm was simple because we just 

computed the motion based on consecutive images. We did 

not use the previous poses or structure to refine the current 

pose. These benefits will accelerate our visual odometry for 

further applications to real-time systems.

In future work, we will focus to solving the scale 

ambiguity without using other sensors, which is still 

a challenge in single vision based visual odometry. In 

addition, we are going to use a Ladybug 3 camera instead of 

a BumBlebee2 to improve the accuracy.
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