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1. INTRODUCTION

In case of hazardous material spill in urban area due 

to the accidents of vehicles carrying hazardous materials, 

secondary economic and social losses as well as the primary 

damage from vehicle accidents are enormous. Therefore, 

studies on the real-time detection and prevention of the 

accidents of vehicles carrying hazardous materials have 

been carried out. Kim et al. (2013) proposed a detection 

technique for vehicles carrying hazardous materials using 

moving reference based Real-Time Kinematic (RTK) by 

installing Global Positioning System (GPS) receivers at a 

tractor and a trailer, respectively, as shown in Fig. 1. Also, 

Lee et al. (2013b) analyzed the performance of the accident 

detection of vehicles carrying hazardous materials based 

on Hardware-In-the-Loop Simulation (HILS) experiment. 
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Jack knifing and rollover were defined as the representative 

accidents of vehicles carrying hazardous materials, and a 

relative navigation system that combines GPS and Inertial 

Navigation System (INS) was used to detect these accidents. 

A method that detects jack knifing accidents using the 

yaw acceleration of the connection angle of a tractor and 

a semi-trailer and that detects rollover accidents using the 

roll acceleration information of a tractor was proposed. 
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Fig. 1. Navigation system for vehicles carrying hazardous materials (Kim et al. 2013). 
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Fig. 1.  Navigation system for vehicles carrying hazardous materials (Kim et 
al. 2013).
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A relative navigation system that combines GPS/INS can 

estimate the relative angular acceleration of two-body 

vehicles carrying hazardous materials, and thus can be 

efficiently used for monitoring accidents.

GPS can be used to estimate the information necessary 

for monitoring the accidents of vehicles carrying hazardous 

materials. However, in the case of GPS, the accuracy and 

continuity of navigation solutions could deteriorate due 

to satellite signal blockage depending on the surrounding 

environments (Soloviev & Venable 2010). To resolve the 

problems of GPS such as the deterioration of accuracy 

and continuity due to signal blockage, studies on hybrid 

navigation systems have been actively performed. A 

hybrid navigation system is a methodology for estimating 

the position, velocity, and posture of a vehicle through 

the efficient combination of various sensors such as GPS, 

INS, and vision sensor. In recent years, it has been actively 

studied in relation to the urban environment navigation 

of robots and unmanned vehicles. In this regard, for the 

relative navigation system suggested by Fosbury & Crassidis 

(2006), a method that uses the navigation solution of GPS 

to maintain the accuracy of INS was proposed; and Wang et 

al. (2008) and Vu et al. (2012) proposed a hybrid navigation 

system for controlling an unmanned aerial vehicle and 

a hybrid navigation system for estimating the position of 

a vehicle in urban environments. Also, Kim et al. (2011) 

proposed a hybrid navigation system using GPS, INS, 

odometer, and polyhedral vision sensor in order to improve 

navigation performance in urban environments. A method 

that can maintain the positioning accuracy of a vehicle, even 

in sections where GPS signals cannot be used, by estimating 

the posture of the vehicle based on the vanishing points 

extracted from polyhedral vision sensor data was presented.

In this study, as the basic research for the performance 

improvement of a GPS/INS based relative navigation system, 

which is used for monitoring the accidents of vehicles 

carrying hazardous materials, a method using a vision 

sensor is proposed, and its feasibility is examined. A relative 

navigation system, which maintains the accuracy of INS in 

urban area using GPS, has a problem of diverging navigation 

solution in sections where GPS signal blockage occurs for 

a long period. Therefore, in this study, the feasibility of a 

technique, which detects the accidents of vehicles carrying 

hazardous materials by estimating angular acceleration 

using a monocular vision sensor in environments where the 

visibility of GPS signals is not secured for a long period, is 

evaluated.

The contents of this study are as follows. First, in using 

a vision sensor, as a method for the combination with 

GPS/INS systems, coordinate systems are defined, and 

the distortion calibration of a vision sensor is explained. 

Then, a process that extracts relative angular acceleration 

based on the changes in the relative angular velocities 

of the feature points extracted from a vision sensor is 

explained. In the experiment, to examine the validity of the 

proposed technique, performance evaluation is carried out 

by comparing the accident detection sections estimated 

using a vision sensor and the accident detection sections 

extracted from INS. By using an equipment set simulating 

a vehicle carrying hazardous materials, the feasibility of the 

proposed method is evaluated.

2. RELEVANT COORDINATE SYSTEMS

For hybrid navigation that combines various sensors, 

a procedure that clearly defines the relation among the 

coordinate systems associated with each sensor should be 

preceded. In this study, five coordinate systems were used 

as summarized in Table 1 (Ligorio & Sabatini 2013).

Fig. 2 shows the relation among the body frames of the 

tractor and the trailer carrying hazardous materials and the 

vision sensor frame. For the centers of the body frames of 

the tractor and the trailer, center points could vary relative to 

the position of the INS sensor depending on the installation 

position. The moving direction of the vehicle was set as 

Fig. 2 shows the relation among the body frames of the tractor and the trailer carrying 
hazardous materials and the vision sensor frame. For the centers of the body frames of the tractor 
and the trailer, center points could vary relative to the position of the INS sensor depending on 
the installation position. The moving direction of the vehicle was set as bX , the rightward 
direction of the moving direction was set as bY , and the bZ  axis was set by applying a right-
handed coordinate system. Also, the center of the vision sensor was set as the center direction of 
the lens, the direction that views a landmark image was set as sX , the rightward direction of the 
viewing direction was set as sY , and the bZ  axis was set by applying a right-handed coordinate 
system. In addition, h  is the height of the installed camera, which represents the distance from 
the ground to the lens of the vision sensor, and it can be measured during the installation of the 
vision sensor. 

Fig. 3 shows the relation between the three-dimensional vision sensor frame and the two-
dimensional pixel frame. f  represents the focal length, and the image coordinates of feature 
points are expressed as points on the image plane. 

Fig. 4 shows the landmark frame, which was used to extract feature points in this study. 
Based on the center point of the landmark, the upward direction was set as tx  and the rightward 
direction was set as ty . Also, to use the geometric characteristics of feature points regarding a 
landmark, the width of the image was expressed as w  and the length was expressed as l . Both 
w  and l  are measured before capturing images. 

The relation between the two-dimensional pixel frame and the three-dimensional vision 
sensor frame can be expressed as Eq. (1) (Lim et al. 2012, Tsai 1987). 
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direction of the viewing direction was set as 
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As shown in Fig. 5, barrel distortion occurs because the ray that passes through the part 
away from the center of a lens is refracted more than the ray that passes through the center part 
of a lens. In practice, radial distortion is insignificant when the distance to the center of an image, 

0r = , and this can be expressed using several terms of Taylor series as shown in Eq. (2). For an 
inexpensive vision sensor, distortion can be expressed using the first two terms. In the case of 
radial distortion, ( ) 0f r =  at the position of 0r = , and thus 0 0a =  should be satisfied. Also, a 
distortion function has the form of a symmetric function, and thus the coefficients of the terms in 
which r  is raised to an odd power should all be 0. Therefore, the characteristics of radial 
distortion is determined by the coefficients of the terms in which r  is raised to an even power. In 
this regard, one is 1k , and the other is 2k . 
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3.2 Tangential Distortion 
 

Besides radial distortion, common distortion that occurs in an image is tangential distortion 
shown in Fig. 6, which is mostly formed during the manufacturing process of a vision sensor. 
Tangential distortion, which is formed because the lens and the image plane are not completely 
parallel during the manufacturing process of a vision sensor, can be calibrated using the 
tangential distortion coefficients, 1 2,p p , as shown in Eq. (3) (Brown 1966). 
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As explained earlier, to calibrate the distortion of an inexpensive vision sensor, four 
intrinsic camera parameters ( , , ,x y x yf f c c ) and four distortion parameters ( 1 2 1 2, , ,k k p p ) are 
required. The intrinsic camera parameters, ,x yf f , represent the focal length of a vision sensor, 
and ,x yc c  represent the principal point, which is the actual center position of a vision sensor. In 
this study, to obtain these eight parameters, OpenCV functions were used (Bradski & Kaehler 
2008). Fig. 7 shows the flow chart for obtaining undistorted images based on the camera 
calibration algorithm implemented using OpenCV functions. For distortion calibration, OpenCV 
calculates distortion parameters for a planar object with a grid form using multi-view images. 
For a planar object whose general geometric form and length are known, the intrinsic parameters 
of the vision sensor were obtained through an indoor experiment (Lim 2013). In this regard, Fig. 
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assumptions are required. In this study, to extract three-

dimensional angular acceleration from two-dimensional 

position information, following procedures are considered.

a)	�Conversion from two-dimensional image information 

to three-dimensional relative position information for 

a number of feature points.

b)	�Conversion from relative position information to 

relative angular velocity information for a number of 

feature points.

c)	� Conversion from relative angle information to relative 

angular acceleration information.

For the conversion of a), the length information of a known 

landmark is used; and for the conversion of b), the assumption 

that each feature point has been extracted from a rigid body 

is used. Lastly, for the conversion of c), the time interval of 

two images, from which a relative angle has been extracted, 

is required. First, four feature points that are detected in an 

image can be expressed as coordinate values for the two-

dimensional image coordinate system using Eq. (4).

        

8a shows the input image for calculating camera parameters, and Fig. 8b shows the undistorted 
image obtained using the calculated parameters. 
 
4. ESTIMATION OF RELATIVE ANGULAR ACCELERATION 
 

A vision sensor projects three-dimensional object information onto a two-dimensional 
image via dimension reduction. From another aspect, this indicates that three-dimensional 
position information is reduced to two-dimensional information. Therefore, to extract angular 
acceleration, a number of intermediate processes and assumptions are required. In this study, to 
extract three-dimensional angular acceleration from two-dimensional position information, 
following procedures are considered. 
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angle has been extracted, is required. First, four feature points that are detected in an image can 
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Also, when the same feature points are presented as coordinate values for the three-

dimensional landmark frame, they can be expressed as Eq. (5) where h   represents the height of 
the feature points. 
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If the perturbation technique is applied to Eqs. (1-5) based on the four feature points within 

the landmark image, Eqs. (6) and (7) can be obtained. 
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Fig. 2 shows the relation among the body frames of the tractor and the trailer carrying 
hazardous materials and the vision sensor frame. For the centers of the body frames of the tractor 
and the trailer, center points could vary relative to the position of the INS sensor depending on 
the installation position. The moving direction of the vehicle was set as bX , the rightward 
direction of the moving direction was set as bY , and the bZ  axis was set by applying a right-
handed coordinate system. Also, the center of the vision sensor was set as the center direction of 
the lens, the direction that views a landmark image was set as sX , the rightward direction of the 
viewing direction was set as sY , and the bZ  axis was set by applying a right-handed coordinate 
system. In addition, h  is the height of the installed camera, which represents the distance from 
the ground to the lens of the vision sensor, and it can be measured during the installation of the 
vision sensor. 

Fig. 3 shows the relation between the three-dimensional vision sensor frame and the two-
dimensional pixel frame. f  represents the focal length, and the image coordinates of feature 
points are expressed as points on the image plane. 

Fig. 4 shows the landmark frame, which was used to extract feature points in this study. 
Based on the center point of the landmark, the upward direction was set as tx  and the rightward 
direction was set as ty . Also, to use the geometric characteristics of feature points regarding a 
landmark, the width of the image was expressed as w  and the length was expressed as l . Both 
w  and l  are measured before capturing images. 

The relation between the two-dimensional pixel frame and the three-dimensional vision 
sensor frame can be expressed as Eq. (1) (Lim et al. 2012, Tsai 1987). 
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3. CALIBRATION OF THE VISION SENSOR 
 

For an inexpensive vision sensor, it is essential to calibrate distortions that are formed 
during the manufacturing process. The radial distortion, which occurs due to the shape of a lens, 
and the tangential distortion, which is formed during the manufacturing process, need to be 
calibrated (Bradski  & Kaehler 2008, Tsai 1987). 
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where 
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       sX : skew-symmetric matrix generated by the vector sX    
 

Based on the relative position of each feature point estimated in Eq. (7), relative angular 
velocity can be estimated using Eqs. (8) and (9). 
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5. PERFORMANCE EVALUATION

To evaluate the accuracy of the accident detection 

estimation of vehicles carrying hazardous materials using 

the proposed technique, an indoor experiment, which 

simulated actual environments, was performed as shown 

in Fig. 9. For the standard of relative angular acceleration, 

the data using MTi (X-Sens) were analyzed and utilized (Lee 

et al. 2013a). Table 2 summarizes the detailed specification 

of the Inertial Measurement Unit (IMU) used in the 

experiment, and the sampling period of the IMU data was 
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100 Hz. Also, in the case of the vision sensor for obtaining 

a landmark image, HD Pro Webcam C920 (Logitech) was 

used, and the sampling period of the image data was 10 Hz. 

The AEK-4T GPS receiver (U-Blox) was used for the time 

synchronization between 100 Hz IMU data and 10 Hz image 

data (Lim 2013).

Fig. 10 shows the detection of four feature points for an 

actual image depending on the changes in the angle. As 

shown in Fig. 10, four feature points could be successfully 

extracted regardless of the angle of the landmark image. 

Also, it showed the possibility of the extraction of feature 

points when the feature point extraction algorithm using 

a landmark image is applied to actual vehicles carrying 

hazardous materials.

 

Fig. 9. Simulation environments. 
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Fig. 11a shows the relative angles calculated from the 

100 Hz IMU data through 10 Hz time synchronization, Fig. 

11b shows the relative angular acceleration calculated 

from IMU, and Fig.  11c shows the relative angular 

acceleration estimated using the vision sensor. Table 3 

summarizes the angular acceleration thresholds of the 

yaw and roll for detecting jack knifing and rollover in the 

experiment environment (Lee et al. 2013a). Fig. 12 shows 

the graphs obtained by the estimation of accident detection 

through applying the thresholds to the estimated angular 

acceleration, and the dots expressed as “1” represent the 

accident detection sections. Figs. 12a and 12b show the 

results obtained by performing accident detection through 

applying the thresholds in Table 3 to the data acquired from 

the IMU data. Also, Tables 4 and 5 summarize the GPS time 

for each section obtained by performing the jack knifing and 

rollover accident detection. Using the IMU data, jack knifing 

accidents were detected at a total of five sections, and 

rollover accidents were detected at a total of three sections.

The accident detection thresholds suggested by Lee 

et al. (2013a) are the values calculated based on the data 

obtained from IMU, and thus are not appropriate for the 

technique proposed in this study. Therefore, studies on 

thresholds for the accident detection using a vision sensor 

Table 3.  Simulation environment of angular acceleration threshold for IMU data (Lee et al. 2013a).
Road type (∞ shape) Variation

of velocity
(km/h)

Loading
capacity

(ton)

Angular
acceleration

(rad/s2)
Friction

coefficient of
left road

Friction
coefficient of

right road
Jack knifing

Rollover
0.85

1
0.1
1

50 → 70
90

8
16

0.349
0.226

Fig. 12.  Detection of accidents.  

Fig. 12. Detection of accidents. 
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are required. As shown in the graphs in Figs. 11b and 

11c, the angular acceleration obtained from IMU and the 

angular acceleration estimated based on the vision sensor 

were found to be different. This indicates that the three-

dimensional angular acceleration estimated using the vision 

sensor is sensitive to the changes in the angles of the two-

dimensional feature points, and thus changes abruptly. In 

other words, for the accident detection of vehicles carrying 

hazardous materials using the vision sensor, new thresholds 

need to be established. In this study, to establish thresholds 

for the accident detection of vehicles carrying hazardous 

materials using the proposed vision sensor, IMU accident 

detection values and accident sections were analyzed. 

Accident detection thresholds using the data obtained 

from the vision sensor were experimentally estimated 

by analyzing the thresholds in Table 3 and the accident 

detection sections in Figs. 12a and 12b. The accident 

detection thresholds estimated based on the proposed 

vision sensor data were 0.04 rad/s2 for the yaw acceleration, 

and 0.17 rad/s2 for the roll acceleration. Fig. 12c shows 

the results for the detection of jack knifing using the vision 

sensor thresholds, and Fig. 12d shows the results for the 

detection of rollover. Tables 6 and 7 summarize the GPS 

time for the accident detection sections using the vision 

sensor data.

When the accident sections detected using the vision 

sensor data were compared with the IMU data, all the five 

jack knifing accident detection sections were detected, and 

the over detection at 5 section was observed. In the case 

of the rollover, all the three sections detected by IMU were 

detected, and the over detection at 1 and 2 sections were 

observed. To summarize the results of the experiment, 

the jack knifing and rollover accident sections, which had 

been detected by estimating accident thresholds using the 

data obtained from the vision sensor, were consistent with 

the accident detection sections detected using the IMU 

data, but they had a tendency toward overestimation. It is 

because the estimation of angular acceleration using the 

vision sensor is sensitive to the changes in the angles of the 

two-dimensional feature points. This could be improved 

by the application of a scale factor in estimating the three-

dimensional position from two-dimensional simplified 

position information.

6. CONCLUSIONS

In this study, to resolve the problems of existing systems 

that calibrate the error of INS in urban area using GPS, 

the feasibility of a technique that detects the accidents of 

vehicles carrying hazardous materials using only vision 

sensor data was examined. Based on the relative angular 

acceleration estimated using a vision sensor, the proposed 

technique experimentally estimates the jack knifing and 

rollover accident detection thresholds of a vehicle carrying 

hazardous materials, and detects accidents. In using a 

vision sensor, for the combination with existing GPS/

INS systems, five coordinate systems were defined, and a 

study on the process for improving the accuracy of feature 

points via image distortion calibration was performed. 

In this study, relative angular acceleration information 

estimated using a vision sensor was used in order to utilize 

the thresholds calculated based on the changes in relative 

angular acceleration that had been previously suggested. 

The performance evaluation of the proposed algorithm was 

carried out by comparing the accident detection sections 

based on the changes in the relative angular acceleration 

of the feature points extracted from a vision sensor and the 

accident detection sections detected using IMU data.

The accident detection thresholds calculated using the 

existing IMU data were not appropriate for the proposed 

algorithm, and thus vision sensor accident detection 

Table  4.  Detected jack knifing by IMU data.
Section Detected GPS time

1
2
3
4
5

450000.1
450033.1
450071.1
450094.1
450116.1

450000.2
450033.2
450071.2
450095.1
450116.2

450001.1

450072.1
450095.2
450117.1

450001.2

450072.2
450097.1
450117.2

450097.2
450118.1 450118.2

Table  5.  Detected rollover by IMU data.
Section Detected GPS time

1
2
3

450094.1
450102.1
450113.1
450117.1

450094.2
450102.2
450113.2
450117.2

450094.3
450103.1
450114.1
450118.2

450095.1
450103.2
450114.2
450119.1

450095.2
450105.1
450116.1
450119.2

450105.2
450117.0
450120.0

Table  7.  Detected rollover by Vision sensor data.
Section Detected GPS time

1
2
3
4
5

450000.1
450071.3
450094.2
450103.1
450116.4

450000.2
450071.4
450094.3
450103.2
450117.0

450072.0

Table  6.  Detected jack knifing by Vision sensor data.
Section Detected GPS time

1
2
3
4
5

6

449999.6
450033.1
450071.3
450094.2
450100.2
450103.3
450114.0
450117.3

450000.1

450071.4
450094.3
450102.0
450104.0
450116.1
450118.1

450000.2

450072.0
450095.0
450102.1
450104.3
450116.2
450118.2

450000.5

450096.1
450102.2

450116.3
450119.0

450096.2
450103.0

450116.4
450120.0

450097.0
450103.1

450117.0
450120.1

450097.4
450103.2

450117.1
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thresholds were presented based on actual experiment data. 

When the results of the accident detection performed using 

the accident detection thresholds calculated based on the 

vision sensor data in indoor environments that simulated 

a vehicle carrying hazardous materials were compared 

with the IMU data, all the accident detection sections were 

detected, but several overestimation cases were observed. 

It is thought that the overestimation cases occurred in the 

process of converting two-dimensional simplified image 

information into three-dimensional information, and that 

they were the errors that occurred because the experimental 

environment where the IMU accident detection values had 

been estimated was different from the environment where 

this study was performed.

The feasibility of the accident detection of vehicles 

carrying hazardous materials was examined through an 

experiment using only the data obtained from a vision 

sensor, and it was found that the calculated accident 

detection thresholds need to be analyzed based on a lot 

more data. To improve the reliability of vision sensor 

accident detection sections, further studies on image 

processing algorithm robust to surrounding environments 

are required. The sensitivity of the vision sensor to the 

changes in the brightness and luminosity of surrounding 

environments could be improved by more studies on 

adaptive feature point extraction algorithm using the 

histograms and changes of the average values of each image 

frame obtained from a vision sensor. Also, the accuracy 

of the accident detection of vehicles carrying hazardous 

materials could be improved by more studies on detection 

thresholds in order to reduce overestimation tendency.
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