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1. INTRODUCTION

Global Navigation Satellite System (GNSS), which is 

represented by the Global Positioning System (GPS) of the 

U.S., has been used in various areas of the modern society 

and has become an essential part of the global social 

infrastructure. However, in aircraft precision approach 

and landing, applying GNSS alone may not satisfy the high 

navigation performance and safety requirements. Therefore, 

Satellite Based Augmentation System (SBAS) was developed 

for such applications.

As the demand for airspace capacity, efficiency, and 

safety is increasing in the modern society, the need for 

navigation systems with higher performance and stability 

also grows. The operation of U.S. Wide Area Augmentation 
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ABSTRACT

Satellite Based Augmentation Systems (SBAS) provide ionospheric corrections at geographically five degree-spaced 
Ionospheric Grid Points (IGPs) and confidence bounds, called Grid Ionospheric Vertical Errors (GIVEs), on the error of 
those corrections. Since the ionosphere is one of the largest error sources which may threaten the safety of a single frequency 
Global Navigation Satellite System (GNSS) user, the ionospheric correction and integrity bound algorithm is essential for 
the development of SBAS. The current single frequency based SBAS, already deployed or being developed, implement the 
ionospheric correction and error bounding algorithm of the Wide Area Augmentation System (WAAS) developed for use in the 
United States. However, the ionospheric condition is different for each region and it could greatly degrade the performance 
of SBAS if its regional characteristics are not properly treated. Therefore, this paper discusses key factors that should be taken 
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SBAS. The main elements of the conventional GIVE monitor algorithm are firstly reviewed. Then, this paper suggests several 
areas which should be investigated to improve the availability of the Korean SBAS by decreasing the GIVE value.
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System (WAAS) was initiated in 2003, and other similar 

navigation systems are currently under test operation or 

development. These include: Multi-functional Satellite 

Augmentation System (MSAS) of  Japan;  European 

Geostationary Navigation Overlay Service (EGNOS) of 

the Europe; and GPS Aided GEO Augmented Navigation 

(GAGAN) of India. In Korea, Korean SBAS research and 

development project will be conducted from 2014.  The first 

objective will be the development of a single frequency-

based operation system with Approach Procedures with 

Vertical guidance (APV-I) capability and the final objective 

will be the realization of Category I experimental operation 

system by 2021.

The largest error source that may affect the accuracy of 

GNSS user positioning and threaten the safety of GNSS users 

comes from the ionosphere. Therefore, the SBAS allows 

the user to correct for the ionosphere induced error by 

providing ionospheric delay estimates at Ionospheric Grid 

Points (IGPs) and confidence bounds of the ionospheric 

delay estimates, called Grid Ionospheric Vertical Errors 

(GIVEs).
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The ionospheric correction procedure implemented in 

the existing SBAS is based on the GIVE monitor algorithm 

of the WAAS developed for use in the Conterminous United 

States (CONUS). However, South Korea is located at low 

geomagnetic latitude in comparison to the US CONUS 

region. Thus Korea is likely to be affected by equatorial 

anomaly (Saito & Fujii 2010) and plasma bubble (Maruyama 

et al. 2013) which frequently take place in the equatorial 

region. If an ionospheric correction and error bounding 

algorithm for the Korean SBAS is designed by assuming 

the same ionospheric activity in the CONUS region, it may 

difficult to realize the optimum performance. Furthermore, 

due to the limited number of reference stations and narrow 

distribution of reference stations in South Korea, if the 

conventional GIVE algorithm for WAAS is applied to the 

Korean SBAS without any modification, the optimum 

availability of the system may not be achieved.

Therefore, this paper discusses key components that 

should be taken into consideration for the development of 

the ionospheric correction and error bounding algorithm 

optimized for the Korean SBAS. The main elements of the 

conventional GIVE algorithm are firstly reviewed. Then, 

essential factors to be considered to improve the availability 

of the Korean SBAS are described. This paper includes 

following Sections: Section 2 explains the ionospheric 

delay estimation methods used in the conventional GIVE 

algorithm; Section 3 describes the GIVE value that is 

the integrity bound on the calculated ionospheric delay 

estimate; Section 4 describes an irregularity detector for 

detection of ionospheric irregularities which may occur 

under disturbed ionospheric conditions; and Section 5 

summarizes the analysis and discussion in each Section, 

and suggests several factors that should be taken into 

account in the ionospheric correction and error bounding 

algorithm design for the Korean SBAS.

2. IONOSPHERIC DELAY ESTIMATION

This Section describes methods of estimating a vertical 

ionospheric delay at each IGP based on the ionospheric 

delay measurements at SBAS reference stations.

2.1 Planar Fit Estimation

In the standard planar fit algorithm, the ionosphere 

around an IGP is modeled under nominal ionospheric 

conditions as follows (Walter et al. 2000):
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square (RMS) errors of the ionospheric delay obtained by 

the planar fit algorithm and the Kriging method during 

disturbed ionospheric conditions Sparks et al. (2011a) also 

reported that the performance of the Kriging-based estimation 

was better than that of the planar fit algorithm by up to 15%. 
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When the ionospheric delay estimation is performed through the fitting, the fit model may never be 
consistent with actual data perfectly. To consider the spatial decorrelation of the planar fit, nom

decorr  is used 
which represents the standard deviation of residuals between the fit model and actual data under nominal 
ionospheric conditions (Altshuler et al. 2002). In the current WAAS, the value is calculated through a 
correlation analysis performed based on the CONUS ionospheric data under nominal ionospheric 
conditions (Walter et al. 2000; Hansen et al. 2000a,b). 

Since the ionospheric phenomena are correlated with the geomagnetic activity, the ionospheric 
behaviors are known to be significantly dependent on the geomagnetic latitude. In the equatorial regions, 
it is difficult to model the ionosphere due to the equatorial anomaly whose peak ionospheric plasma 
densities form about  15 degrees magnetic latitude (Cormier et al. 2003; Saito & Fujii 2010). In the case 
of the WAAS, the ionospheric decorrelation analysis was performed for the region of Brazil to extend the 
coverage of WAAS to Latin America (Cormier et al. 2003). Countries in low latitude regions such as 
India conducted studies to redefine nom

decorr  to establish SBAS of their own countries (Sarma et al. 2009). 
Therefore, considering the geographic characteristics of Korea which is closer to the geomagnetic equator 
than the CONUS region, a different nom

decorr  value should be defined instead of the nom
decorr  value for the 

CONUS. 
 
3.3 Undersampled Ionospheric Threat Model 
 
 The GIVE based on the formal error variance should be large enough to bound the ionospheric 
estimation error at an IGP. However, when the ionospheric irregularities may form between the IPPs and 
are not observed by the SBAS reference stations, the GIVE should be increased to ensure the integrity of 
the user position solution. When calculating GIVE, the increment is derived from an undersampled 
ionospheric threat model. Fig. 1 shows an example result from populating data to threat space using the 
data observed at reference stations in Korea on November 6, 2001. The undersampled irregularities are 
estimated using data from all ionospheric storm days to construct an undersampled threat model. 

undersampled  represents the uncertainty bound due to undersampling (Pandya et al. 2007; Sparks et al. 
2011b).  
 
 As shown in Fig. 1, undersampled  is a function of fit radius and Relative Centroid Metric (RCM). The 
fit radius and RCM represent the density and uniformity of the ionospheric measurements used in the 
planar fit, respectively (Pandya et al. 2007). As the density or uniformity of the ionospheric measurements 
decreases, the risk of undersampling increases. Therefore, an undersampled threat model is defined in 
such a threat metric domain (Sparks et al. 2005; Pandya et al. 2007). 
 An undersampled threat model is established with post-processed ionospheric storm data using a 
data deprivation method that simulates the worst case undersampling conditions (Pandya et al. 2007; 
Sakai et al. 2008; Sparks et al. 2005). When the data deprivation method is performed, the potential 
ionospheric threats are better identified as the number of reference stations is greater. In the construction 
of an ionospheric threat model for the MSAS, Sakai (2008) showed that more undersampled ionospheric 
threats could be identified through an oversampling method. The oversampling method uses not only the 
ionospheric measurements at the six MSAS reference stations in Japan but also those of additional 
reference stations (Sakai et al. 2008). Since the number of Korean SBAS reference stations would be 
similar to that of MSAS, it would be beneficial to introduce the oversampled method to establish a 
reliable ionospheric threat model in Korea. 
 Although it is necessary to build an ionospheric threat model for the single frequency SBAS, an 
excessively conservative threat model may rather decrease the system availability. The threat model 
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ionospheric threat model.
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similar to that of MSAS, it would be beneficial to introduce the oversampled method to establish a 
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 Although it is necessary to build an ionospheric threat model for the single frequency SBAS, an 
excessively conservative threat model may rather decrease the system availability. The threat model 
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 is a function of fit radius 

and Relative Centroid Metric (RCM). The fit radius and RCM 

represent the density and uniformity of the ionospheric 

measurements used in the planar fit, respectively (Pandya 

et al. 2007). As the density or uniformity of the ionospheric 

measurements decreases, the risk of undersampling 

increases. Therefore, an undersampled threat model is 

defined in such a threat metric domain (Sparks et al. 2005, 

Pandya et al. 2007).

An undersampled threat model is established with post-

processed ionospheric storm data using a data deprivation 

method that simulates the worst case undersampling 

conditions (Pandya et al. 2007, Sakai et al. 2008, Sparks et 

al. 2005). When the data deprivation method is performed, 

the potential ionospheric threats are better identified as the 

number of reference stations is greater. In the construction 

of an ionospheric threat model for the MSAS, Sakai et al. 

(2008) showed that more undersampled ionospheric threats 

could be identified through an oversampling method. 

The oversampling method uses not only the ionospheric 

measurements at the six MSAS reference stations in Japan 

but also those of additional reference stations (Sakai et al. 

2008). Since the number of Korean SBAS reference stations 

would be similar to that of MSAS, it would be beneficial to 

introduce the oversampled method to establish a reliable 

ionospheric threat model in Korea.

Although it is necessary to build an ionospheric threat 

model for the single frequency SBAS, an excessively 

conservative threat model may rather decrease the system 

availability. The threat model contribution to the GIVE 

computation is determined by the distribution of the 

ionospheric measurements used in fitting. The design 

of a threat model metric that may precisely characterize 

the spatial distribution of measurements with which 

undersampled ionospheric threats can be generated is thus 

a key factor for increasing the SBAS availability.

4. IONOSPHERIC STORM DETECTORS

In the WAAS GIVE algorithm, the ionospheric irregularity 

detector monitors whether the ionospheric fitting model 

well reflects the actual ionosphere by performing a chi-

square consistency check (Sparks et al. 2011a, Walter et 

al. 2000). When the irregularity detector is tripped by the 

existence of the ionospheric irregularities, the GIVE value 

at the IGP is set to be 45 m (the maximum possible GIVE 

value) to guarantee the integrity of the user navigation 

solution (Sparks et al. 2011b). Even though the trip of the 

irregularity detector would ensure safety of the user under 

the ionospheric disturbances, the false alarm given by the 

storm detector could rather damage the system availability. 

The irregularity detector performs differently based on 

the number of IPPs used in fitting, the distribution of the 

IPPs, and the accuracy of the ionospheric delay estimation 

(Sparks et al. 2011a). Therefore, if the conventional planar 

fit algorithm is applied without any modification to the 

Korean region where a smaller number of ionospheric 

measurements are available, the poor performance is 

expected due to the increased false alarm rate of the 

irregularity detector. Hence, further studies need to be 

conducted on the design of the irregularity detector to 

improve system performance.

5. DISCUSSION

Beginning with a single frequency system supporting 

APV-I precision approach, the Korean SBAS development 

plan is aimed at the development of a dual frequency-based 

CAT-I experimental operation system. According to Bang 

et al. (2013), it is expected that the required availability is 

achievable as shown in Fig. 2 when an ionospheric threat 

model that reflects the ionospheric activity in the Korean 

region is applied. However, the expected performance is too 

poor to support LPV-200 precision approaches (Bang et al. 

2013).

If CAT-I operations or near CAT-I capability with single-

frequency based SBAS could be achieved through the 

Fig. 2. Expected availability performance of single-frequency SBAS for 
APV-I (HAL=40, VAL=50)  operations in the Korean region. 
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improvement of the ionospheric correction and error 

bounding algorithm including the ionospheric threat 

model, the use of the single frequency SBAS would increase 

as a primary mean and also as a backup system for a future 

dual frequency-based CAT-I operational system. Thus, it 

is necessary to study methodologies of improving each 

element of the ionospheric correction and integrity bound 

algorithm in order to improve the Korean single frequency 

SBAS performance.

As described above, there are two major challenges to 

the ionospheric correction and error bounding algorithm 

design for the Korean SBAS. First, due to formation of 

reference stations in the small territory, the number and the 

coverage of the ionospheric measurements obtained from 

those reference stations are limited. Second, since Korea 

is located in lower geomagnetic latitude than that of the 

CONUS region, the effects of the ionospheric phenomena 

that are rarely observed in the CONUS region could 

be continuously observed in Korea. These ionospheric 

phenomena include equatorial anomaly (Saito & Fujii 2010) 

and plasma bubble (Maruyama et al. 2013). However, the 

conventional GIVE algorithm was developed based on the 

historical observation of the ionospheric activities over the 

CONUS region. Thus, this section suggests several areas that 

should be revisited for the development of the ionospheric 

correction and error bounding algorithm to improve the 

performance of the Korean SBAS, as described below.

The number of the ionospheric measurements used in 

the planar fit method (Walter et al. 2000) or Kriging method 

(Blanch 2002, 2003) not only has a direct effect on the formal 

estimation error but also affects the ionospheric irregularity 

detector trip rate. In particular, when the number of the 

ionospheric measurements is insufficient to perform a 

reasonable fit, the irregularity detector is frequently tripped 

despite the nominal ionospheric conditions. Such false 

alarm of the irregularity detector results in degradation 

of the nominal performance of the SBAS. Therefore, a 

study needs to be conducted on the design of the IPP 

search parameters by considering that a small number of 

ionospheric measurements are available in the Korean 

region. Along with the consideration on the number of 

reference stations, a study on determining a trip threshold 

of the irregularity detector is also needed in order to reduce 

a false alarm rate of the irregularity detector.

The performance of the irregularity detector varies 

depending on the number of the ionospheric measurement 

as well as the accuracy of the ionospheric delay estimation 

(Sparks et al. 2011b). When the accuracy of the delay 

estimation increases, the formal estimation error may 

decrease and the false alarm rate of the irregularity detector 

may also decrease (Sparks et al. 2011b). Thus, if the Kriging 

method (Blanch 2002, 2003) is applied to estimate the 

vertical ionospheric delay at IGPs, better system availability 

is expected in comparison with the planar fit-based 

algorithm.

Next, unlike the ionosphere over the CONUS region, 

the ionosphere in the region of Korea may include local 

ionospheric irregularities caused by equatorial anomaly 

(Saito & Fujii 2010) or plasma bubble (Maruyama et al. 

2013). These local ionospheric phenomena may increase 

the uncertainty of ionosphere modeling. Therefore, it is 

required to define a 
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include local ionospheric irregularities caused by equatorial anomaly (Saito & Fujii 2010) or plasma 
bubble (Maruyama et al. 2013). These local ionospheric phenomena may increase the uncertainty of 
ionosphere modeling. Therefore, it is required to define a nom

decorr  value reflecting the ionosphere in the 
region of Korea by performing a nominal ionospheric decorrelation analysis (Hansen et al. 2000a; Sakai 
et al. 2004). In addition, it is necessary to study a method of applying the nom

decorr  value in a different 
manner according to the phase of the ionospheric activities in the Korean region. 

As described above, the ionospheric threat model, which is another contribution to the GIVE 
computation, is defined in the threat metric (i.e., Rfit and RCM) domain. If the threat metric fails to 
characterize the geometries of IPPs at which ionospheric measurements are used for ionospheric delay 
estimation, an excessively conservative undersampled value may be applied to the GIVE computation. Thus, 
to reduce the unnecessarily large contribution of the threat model to the GIVE value, a threat metric 
which accurately characterizes the IPP distribution needs to be developed. In addition, as mentioned in 
Section 3.3, an oversampling method (Sakai et al. 2008) needs to be introduced, considering the 
insufficient number of reference stations in Korea. 
  
6. CONCLUSIONS
 

This paper discussed several factors that should be taken into consideration for the development of the 
ionospheric correction and integrity bound algorithm of the Korean SBAS. First, the key elements of the 
conventional SBAS ionospheric correction and error bounding algorithm were discussed. On the basis of 
the analysis, factors which should be considered to improve the availability of the Korean SBAS are 
suggested as follows: 
 

 Improvement of ionospheric delay estimation and fitting method (including Kriging algorithm)  
 Selection of IPP search parameters by considering the insufficient number of reference stations 

in Korea 
 Design of the irregularity detector by considering the insufficient number of reference stations in 

Korea 
 Determination of a nominal ionospheric decorrelation value reflecting the ionospheric conditions 

in the region of Korea 
 Construction of an ionospheric threat model that covers ionospheric irregularities in the Korean 

region and development of threat model metric that precisely identifies characteristics of IPP 
geometries 
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computation, is defined in the threat metric (i.e., Rfit and RCM) domain. If the threat metric fails to 
characterize the geometries of IPPs at which ionospheric measurements are used for ionospheric delay 
estimation, an excessively conservative undersampled value may be applied to the GIVE computation. Thus, 
to reduce the unnecessarily large contribution of the threat model to the GIVE value, a threat metric 
which accurately characterizes the IPP distribution needs to be developed. In addition, as mentioned in 
Section 3.3, an oversampling method (Sakai et al. 2008) needs to be introduced, considering the 
insufficient number of reference stations in Korea. 
  
6. CONCLUSIONS
 

This paper discussed several factors that should be taken into consideration for the development of the 
ionospheric correction and integrity bound algorithm of the Korean SBAS. First, the key elements of the 
conventional SBAS ionospheric correction and error bounding algorithm were discussed. On the basis of 
the analysis, factors which should be considered to improve the availability of the Korean SBAS are 
suggested as follows: 
 

 Improvement of ionospheric delay estimation and fitting method (including Kriging algorithm)  
 Selection of IPP search parameters by considering the insufficient number of reference stations 

in Korea 
 Design of the irregularity detector by considering the insufficient number of reference stations in 

Korea 
 Determination of a nominal ionospheric decorrelation value reflecting the ionospheric conditions 

in the region of Korea 
 Construction of an ionospheric threat model that covers ionospheric irregularities in the Korean 

region and development of threat model metric that precisely identifies characteristics of IPP 
geometries 
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into consideration for the development of the ionospheric 

correction and integrity bound algorithm of the Korean 

SBAS. First, the key elements of the conventional SBAS 

ionospheric correction and error bounding algorithm were 

discussed. On the basis of the analysis, factors which should 

be considered to improve the availability of the Korean 

SBAS are suggested as follows:

● Improvement of ionospheric delay estimation and 

fitting method (including Kriging algorithm) 

● Selection of IPP search parameters by considering the 

insufficient number of reference stations in Korea

● Design of the irregularity detector by considering the 

insufficient number of reference stations in Korea

● Determination of a nominal ionospheric decorrelation 
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value reflecting the ionospheric conditions in the 

region of Korea

● Construction of an ionospheric threat model that 

covers ionospheric irregularities in the Korean region 

and development of threat model metric that precisely 

identifies characteristics of IPP geometries

In addition, further works needs to be conducted to 

perform the simulation to which the analytical results of this 

paper may be applied. Through the simulation, the effect of 

the individual analytical results on the accuracy, integrity, 

and availability of a single frequency-based SBAS should 

be analyzed to verify the suggestions described above. This 

work would be useful for the design of the Korean SBAS 

architecture if deployed in the future.
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