
JPNT 3(3), 99-105 (2014)
http://dx.doi.org/10.11003/JPNT.2014.3.3.099

Copyright © The Korean GNSS Society

JPNT Journal of Positioning,
Navigation, and Timing

http://www.gnss.or.kr Print ISSN: 2288-8187 Online ISSN: 2289-0866

1. INTRODUCTION

As for the current satellite navigation signals, new satellite

navigation systems such as Galileo, Beidou, Indian Regional

Navigation Satellite System (IRNSS), and Quai-Zenith

Satellite System (QZSS) have been developed and operated,

along with the modernization of Global Positioning

System (GPS) and GLObal NAvigation Satellite System

(GLONASS). Accordingly, with the purpose of the research

and development of new satellite navigation signals, specific

hardware processing chips need to be newly developed

and applied for the generation and processing of simulated

signals, and thus, the required time becomes longer. On

the other hand, software-based signal generation and

processing can be developed using general programming

language such as C/C++, and the generation and processing

of new signals are possible within several months.

Software-based Real-time GNSS Signal Generation and Processing
Using a Graphic Processing Unit (GPU)
Sung-Hyuck Im1, Gyu-In Jee2†

1Korea Aerospace Research Institute, Daejeon 305-806, Korea
2Department of Electronics Engineering, Konkuk University, Seoul 143-701, Korea

ABSTRACT

A graphic processing unit (GPU) can perform the same calculation on multiple data (SIMD: single instruction multiple data)
using hundreds of to thousands of special purpose processors for graphic processing. Thus, high efficiency is expected when
GPU is used for the generation and correlation of satellite navigation signals, which perform generation and processing by
applying the same calculation procedure to tens of millions of discrete signal samples per second. In this study, the structure
of a GPU-based GNSS simulator for the generation and processing of satellite navigation signals was designed, developed, and
verified. To verify the developed satellite navigation signal generator, generated signals were applied to the OEM-V3 receiver
of Novatel Inc., and the measured values were examined. To verify the satellite navigation signal processor, the performance
was examined by collecting and processing actual GNSS intermediate frequency signals. The results of the verification
indicated that satellite navigation signals could be generated and processed in real time using two GPUs.

Keywords:	 GPU, software defined radio, GNSS, CUDA

However, a general purpose processor has a limitation in

processing capacity, and thus, for real-time generation and

processing of multiple satellite navigation signals, a special

purpose processor, which has superior parallel processing

performance compared to the existing general purpose

processor, is required. A technique that is recently in the

spotlight considering the compatibility with a general

purpose processor is the parallel processing technique using

a graphic processing unit (GPU). GPU includes hundreds

of to thousands of special purpose processors for graphic

processing, and aims to carry out programming so that the

same function can be performed on multiple data. As the

correlation and generation of satellite navigation signals

involve the same calculation procedure for multiple sample

and generation data, the use of GPU could maximize the

efficiency.

In this study, the structure of a GPU-based Global

Navigation Satellite System (GNSS) simulator for the

generation and processing of satellite navigation signals

was designed, developed, and verified. For the RF band

conversion and sample of satellite signals, the vector signal

generator and analyzer of National Instrument Corporation

were used. For GPU, Tesla-K20 of Nvidia Corporation with

Received May 09, 2014 Revised July 28, 2014 Accepted July 28, 2014
†Corresponding Author

E-mail: gijee@konkuk.ac.kr
Tel: +82-2-450-3070 Fax: +82-2-3437-5235

100 JPNT 3(3), 99-105 (2014)

http://dx.doi.org/10.11003/JPNT.2014.3.3.099

a Kepler architecture was used. A workstation was used for

the control of the entire system. To verify the developed

satellite navigation signal generator, generated signals

were applied to the OEM-V3 receiver of Novatel Inc., and

the measured values were examined. To verify the satellite

navigation signal processor, the navigation solution

performance was examined. The results of the verification

indicated that satellite navigation signals could be generated

and processed in real time using two GPUs.

2. STRUCTURE OF A SOFTWARE-BASED
GNSS RECEIVER

2.1 Structure of a general GNSS receiver

A general hardware-based GNSS receiver consists of

front-end, analog to digital (A/D) converter, correlator, and

microprocessor (Kaplan & Hegarty 2005). Fig. 1 shows the

structure of a general hardware-based GNSS receiver. A

GNSS signal is received by an antenna, passes through a low

noise amplifier, is converted to an intermediate frequency

signal, and goes through A/D conversion. Then, it is entered

into each correlator, and a measured value is generated

through signal acquisition and tracking. Using the measured

value generated by the correlator, the microprocessor

calculates a position by performing a navigation algorithm.

In the case of a hardware-based receiver, to process a new

signal structure, it is essential to replace the correlator that

performs the demodulation of signals (Im et al. 2007).

2.2 Structure of a general software-based GNSS receiver

Fig. 2 shows the structure of a general software-based

satellite navigation receiver (Akos 1997). Unlike a hardware-

based receiver, the correlator part is performed by the

microprocessor. Thus, all the processing excluding the RF

part (antenna, front-end, and A/D converter) is performed

by the microprocessor. Due to its structural limit, a

microprocessor has a limitation in processing high-capacity

data (tens of millions of samples per second) in real time.

Therefore, to resolve this problem, a processor that is

capable of real-time parallel processing of high-capacity

data is required (Im et al. 2007).

2.3. Software-based GNSS receiver using a GPU

GPU has been used as a processor for graphics. However,

it has recently been used for scientific calculation based on

the fact that its structure is efficient for parallel calculation.

GPU is designed to have a structure where a lot of special

purpose processors can be simultaneously operated. Thus,

the efficiency can be maximized when the same calculation

is performed on multiple data. Fig. 3 shows the structure

of a software-based receiver using GPU. In this structure,

the conversion and correlation of signals are performed

by GPU; and the control of GPU and signal tracking and

the calculation of a navigation solution are performed

by the microprocessor. GPU can be substituted by field

programmable gate array (FPGA). However, GPU has been

used in the existing general purpose personal computer,

and thus, the interface is easy. Also, for the programming

method, development using C or C++ is possible in the

existing development tool. In the case of FPGA, VHSIC

Hardware Description Language (VHDL) or Verilog is used,

and thus, the conversion of an algorithm that has been

developed using the existing C or C++ is required. Also, due

to the nature of FPGA, there are difficulties in implementing

high-complexity calculations, and it is not appropriate for

implementing floating point calculations (Thor 1999). In

addition, it is essential to understand an entire algorithm

(signal processing), and to optimize it for FPGA. Therefore,

FPGA has lower flexibility than GPU.

- 7 -

LNA
RF/IF

&
SAMPLING

TRACKING
CHANNEL

TRACKING
CHANNEL

NAVIGATION
PROCESSING

Front-End Correlator Microprocessor

TRACKING
CHANNEL

TRACKING
CHANNEL

Fig. 1. Structure of a general GNSS receiver.

Front-End

Interface
(SPI or DMA)

Multi-
Channel

Correlation
Unit

MPU

LNA

RF/IF
&

Sampling
(NJ 1006A)

Signal
Trasform

Tracking &
Calculating a

Navigation
Solution

Fig. 2. Structure of a general software-based GNSS receiver.

Front-End

Interface
(SPI or DMA)

Multi-
Channel

Correlation
Unit

MPU

LNA
RF/IF

&
Sampling

Signal
Trasform

Tracking &
Calculating a

Navigation
Solution

GPU

Fig. 3. Structure of a software-based GNSS receiver using GPU.

Fig. 4. Structure of single channel GNSS signal generation.

Fig. 1.  Structure of a general GNSS receiver.

- 7 -

LNA
RF/IF

&
SAMPLING

TRACKING
CHANNEL

TRACKING
CHANNEL

NAVIGATION
PROCESSING

Front-End Correlator Microprocessor

TRACKING
CHANNEL

TRACKING
CHANNEL

Fig. 1. Structure of a general GNSS receiver.

Front-End

Interface
(SPI or DMA)

Multi-
Channel

Correlation
Unit

MPU

LNA

RF/IF
&

Sampling
(NJ 1006A)

Signal
Trasform

Tracking &
Calculating a

Navigation
Solution

Fig. 2. Structure of a general software-based GNSS receiver.

Front-End

Interface
(SPI or DMA)

Multi-
Channel

Correlation
Unit

MPU

LNA
RF/IF

&
Sampling

Signal
Trasform

Tracking &
Calculating a

Navigation
Solution

GPU

Fig. 3. Structure of a software-based GNSS receiver using GPU.

Fig. 4. Structure of single channel GNSS signal generation.

Fig. 3.  Structure of a software-based GNSS receiver using GPU.

Front-End

Interface
(SPI or DMA)

Multi-
Channel

Correlation
Unit

MPU

LNA

RF/IF
&

Sampling
(NJ 1006A)

Signal
Trasform

Tracking &
Calculating a

Navigation
Solution

Fig. 2.  Structure of a general software-based GNSS receiver.

Sung-Hyuck Im & Gyu-In Jee GPU-based Real-Time GNSS Simulator 101

http://www.gnss.or.kr

3. STRUCTURE OF A SOFTWARE-BASED
GNSS SIGNAL GENERATOR

3.1 Hardware-based GNSS signal generator

Fig. 4 shows the structure of hardware-based single

channel satellite navigation signal generation. The

geometric relation of a satellite and a receiver is calculated,

and code and Doppler are generated by applying an

intermediate frequency signal control value. Then, a single

satellite signal is generated through mixing with a carrier.

For example, for the generation of 12 satellite navigation

signals, 12 satellite navigation signals are generated using a

12-channel hardware-based signal generation module, and

they are converted to a single output using an RF combiner.

A hardware-based satellite navigation signal generator

guarantees accuracy and real-timeness, and is easy to use.

However, it is difficult to manufacture, is expensive, and

requires a long period for development. Also, a commercial

hardware-based satellite navigation signal generator has a

limitation in performing simulations that are required by a

user, due to the limit of provided scenarios.

3.2 Software-based GNSS signal generator

Fig. 5 shows the structure of software-based satellite

navigation signal generation. The geometric relations of

desired number of satellites and receiver are calculated,

and intermediate frequency signals for discrete samples

are generated by software. Then, the signals of the entire

satellites are generated via mixing. The generated satellite

signals are made to have a desired RF band using digital

to analog (D/A) conversion and RF up-conversion, which

completes the satellite navigation signal generation. As

signals for discrete samples are generated, the generation

accuracy is determined by the density of the sample

interval. The code generation accuracy using the developed

software-based satellite navigation signal generator is one

over dozens meter and the carrier generation accuracy is

one over thousands meter. Thus, it satisfies the performance

for a simulation at a commercial receiver level. However,

although it has higher flexibility than a hardware-based

satellite navigation signal generator, for a simulation at a

high-precision receiver level, the code generation accuracy

(one over hundreds meter) and carrier generation accuracy

(one over thousands ~ one over tens of thousands meter)

of a commercial hardware-based signal generator are

- 7 -

LNA
RF/IF

&
SAMPLING

TRACKING
CHANNEL

TRACKING
CHANNEL

NAVIGATION
PROCESSING

Front-End Correlator Microprocessor

TRACKING
CHANNEL

TRACKING
CHANNEL

Fig. 1. Structure of a general GNSS receiver.

Front-End

Interface
(SPI or DMA)

Multi-
Channel

Correlation
Unit

MPU

LNA

RF/IF
&

Sampling
(NJ 1006A)

Signal
Trasform

Tracking &
Calculating a

Navigation
Solution

Fig. 2. Structure of a general software-based GNSS receiver.

Front-End

Interface
(SPI or DMA)

Multi-
Channel

Correlation
Unit

MPU

LNA
RF/IF

&
Sampling

Signal
Trasform

Tracking &
Calculating a

Navigation
Solution

GPU

Fig. 3. Structure of a software-based GNSS receiver using GPU.

Fig. 4. Structure of single channel GNSS signal generation.
 Fig. 4.  Structure of single channel GNSS signal generation.

- 8 -

Fig. 5. Structure of a software-based GNSS signal generator.

Fig. 6. Graphic processor (left: GeForce, right: TESLA) (Nvidia 2014).

Fig. 5.  Structure of a software-based GNSS signal generator.

102 JPNT 3(3), 99-105 (2014)

http://dx.doi.org/10.11003/JPNT.2014.3.3.099

required. Therefore, further research is needed.

4. STRUCTURE OF GPU

The GPU used in this study was Tesla-K20 of Nvidia

Corporation. For GPU-based programming, OpenCL

and DirectX Compute as well as compute unified device

architecture (CUDA) can be used. However, for low-level

programming, application of the Nvidia product family

using CUDA could increase the efficiency of development.

As for the difference between the Tesla product family and

the GeForce product family, Tesla is GPU for calculation,

has limited or no display function, and includes a double

precision floating point calculation function; and thus, it

has superior double precision floating point calculation

performance compared to the GeForce product family.

Fig. 6 shows the GeForce Titan of Nvidia Corporation

and the Tesla module for calculation (K20). The K20

module is equipped with 2,496 CUDA cores. Therefore,

2,496 calculations can be performed per one cycle. The

differences between a general graphic processor and

Tesla-K20 include the double precision floating point

calculation function and the adoption of error correcting

code (ECC) memory for preventing calculation error due to

memory error. For satellite navigation signal processing, the

processing performance of the GeForce product family with

more cores is generally superior to that of the Tesla product

family. However, for satellite navigation signal generation, it

is desirable to use the Tesla product family because the use

of double precision floating point is frequent.

Tesla-K20 includes 13 streaming multi-processors (SMX)

shown in Fig. 7. Each SMX consists of 192 single precision

CUDA cores, 64 double precision units, 32 special function

units (SFU), and 32 load/store units (LD/ST); is controlled

by one instruction cache, four warp schedulers, and eight

dispatch modules; and includes 64KB shared memory and

48KB read-only data cache. Therefore, Tesla-K20 includes

2,496 CUDA cores (Nvidia 2014).

5. GNSS SIGNAL GENERATION AND
PROCESSING USING GPU

Fig. 8 shows a software-based satellite navigation

simulator using GPU. The generation and processing of

- 8 -

Fig. 5. Structure of a software-based GNSS signal generator.

Fig. 6. Graphic processor (left: GeForce, right: TESLA) (Nvidia 2014).
 Fig. 6.  Graphic processor (left: GeForce, right: TESLA) (Nvidia 2014).

- 9 -

Fig. 7. Structure of a streaming multiprocessor: SMX (Nvidia 2014).

Fig. 8. GPU-based GNSS signal simulator (generation and processing).

Fig. 7.  Structure of a streaming multiprocessor: SMX (Nvidia 2014).

- 9 -

Fig. 7. Structure of a streaming multiprocessor: SMX (Nvidia 2014).

Fig. 8. GPU-based GNSS signal simulator (generation and processing).
 Fig. 8.  GPU-based GNSS signal simulator (generation and processing).

- 10 -

Fig. 9. GPU-based correlator.

Fig. 10. Flowchart of the signal processing of a GPU-based receiver.

Fig. 11. Correlation result for signal monitoring (64 track-arm).

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PRN 193
PRN 28

Fig. 9.  GPU-based correlator.

Sung-Hyuck Im & Gyu-In Jee GPU-based Real-Time GNSS Simulator 103

http://www.gnss.or.kr

signals are performed by the GPU module (or server),

and the transmission and control of data are performed

by the control server (or workstation). For the collection

and generation of RF signals, the PXIe-5673 (vector signal

generator) and PXIe-5663 (vector signal analyzer) of

National Instrument Corporation were used. For low-priced

implementation, Universal Software Radio Peripheral

(USRP) or Blade-RF module can be used for the collection

and generation of RF signals although the accuracy and

applicability would slightly decrease.

5.1 GPU-based GNSS signal processing

Fig. 9 shows a GPU-based correlator. Variables that

are the most frequently used in the processing of satellite

navigation signals are the Doppler values of code and

carrier. Thus, if these frequently used variables are included

in constant memory (Sanders & Kandrot 2010), and a partial

sum technique using shared memory is used for correlation

sum (Kirk & Hwu 2010), a real-time software correlator with

64 tracking-arms could be implemented up to about 30

channels. Fig. 10 shows the flowchart of the processing of a

satellite navigation receiver using GPU.

Fig. 11 shows the correlation result of GPS PRN 28 satellite

and MSAS PRN 193, using the implemented correlator. Fig.

12 shows the comparison between the position solution

calculated using the implemented real-time GPU-based

software satellite navigation receiver and the position

solution obtained by the OEM-V3 of Novatel Inc.

5.2 GPU-based GNSS signal generation

Using the GPU and CUDA explained earlier, a baseband

signal generation part, which is part of a signal generator,

was implemented. Fig. 13 shows the flowchart of the

baseband signal generation for satellite navigation signal

generation. It separately shows a case using CPU and a case

using GPU. In Fig. 14, the parts that are processed by GPU

- 11 -

Fig. 12. Horizontal position error (left: software GPS, right: Novatel OEM-V3).

Fig. 13. Flowchart of GPU-based signal generation.

Load S ignal
P rofile

(every 1m s)

Set S ignal
Contro l Mem ory

(every 1m s)

Generate
Baseband

S ignal
(every 1m s)

Add
Noise
and

Interferences
(every 1m s)

DFT-based
Filtering

(every 1m s)

Load S ignal
P rofile

(every 1m s)

Set S ignal
Contro l Mem ory

(every 1m s)

Generate
Baseband

S ignal
(every 1m s)

using SigGen
Kernel

Add Noise
and

Interferences
(every 1m s)

using CURAND

DFT-based
Filtering

(every 1m s)
using CUFFT

Interm ediate
Frequency

M ixing
(every 1m s)

Interm ediate
Frequency

M ixing
(every 1m s)
using SigM ix

Kernel

On GPU

Genera l
P rocessor

G raphic
Processor

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Horizontal Position Error

East [meter]

N
o
rt

h
 [

m
e
te

r]

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Point Positioning Error

no
rt

h
er

ro
r

(m
)

east error (m)

Fig. 12.  Horizontal position error (left: software GPS, right: Novatel OEM-V3).

- 10 -

Fig. 9. GPU-based correlator.

Fig. 10. Flowchart of the signal processing of a GPU-based receiver.

Fig. 11. Correlation result for signal monitoring (64 track-arm).

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PRN 193
PRN 28

Fig. 11.  Correlation result for signal monitoring (64 track-arm).

- 10 -

Fig. 9. GPU-based correlator.

Fig. 10. Flowchart of the signal processing of a GPU-based receiver.

Fig. 11. Correlation result for signal monitoring (64 track-arm).

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PRN 193
PRN 28

Fig. 10.  Flowchart of the signal processing of a GPU-based receiver.

104 JPNT 3(3), 99-105 (2014)

http://dx.doi.org/10.11003/JPNT.2014.3.3.099

in Fig. 5 are shown in rectangles with rounded corners. GPU

has low efficiency for complicated calculations such as the

calculation of the geometric relation between a satellite

and a receiver. Thus, CPU performs this complicated

calculation; and based on this, GPU is appropriate for a part

that generates signals corresponding to each sample, and a

calculation that obtains the sum of each generated signal.

6. CONCLUSION

Currently, software-based satellite navigation signal

generation and processing are widely used in satellite

navigation signal studies due to the advantage of prompt

development. In this study, considering this research and

development trend, GPU was introduced, applied, and

verified for the generation and processing of high-capacity

satellite navigation signals, and the possibility of replacing

the existing high-priced satellite navigation simulator

was examined. If a hardware-based satellite navigation

simulator is used in a satellite navigation signal spoofing

study, limitations in generating various spoofing scenarios

could be overcome, and a study that unifies real-time signal

generation and processing of various spoofing scenarios is

enabled.

However, in the case of software-based signal processing,

pulse per second (PPS) generation is difficult; and in the

case of signal generation, the accuracy is limited. Therefore,

further studies for overcoming these problems are required.

ACKNOWLEDGMENTS

This research was supported by a grant from Transportation

System Innovation Program (TSIP) funded by Ministry of Land,

Transport and Maritime Affairs (MLTM) of Korean government.

- 11 -

Fig. 12. Horizontal position error (left: software GPS, right: Novatel OEM-V3).

Fig. 13. Flowchart of GPU-based signal generation.

Load S ignal
P rofile

(every 1m s)

Set S ignal
Contro l Mem ory

(every 1m s)

Generate
Baseband

S ignal
(every 1m s)

Add
Noise
and

Interferences
(every 1m s)

DFT-based
Filtering

(every 1m s)

Load S ignal
P rofile

(every 1m s)

Set S ignal
Contro l Mem ory

(every 1m s)

Generate
Baseband

S ignal
(every 1m s)

using SigGen
Kernel

Add Noise
and

Interferences
(every 1m s)

using CURAND

DFT-based
Filtering

(every 1m s)
using CUFFT

Interm ediate
Frequency

M ixing
(every 1m s)

Interm ediate
Frequency

M ixing
(every 1m s)
using SigM ix

Kernel

On GPU

Genera l
P rocessor

G raphic
Processor

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Horizontal Position Error

East [meter]

N
o
rt

h
 [

m
e
te

r]

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Point Positioning Error

no
rt

h
er

ro
r

(m
)

east error (m)

Fig. 13.  Flowchart of GPU-based signal generation.

- 12 -

Fig. 14. Structure of a GPU-based spoofing simulator.

GPU Part

GPU Part

GPU & CPU Part

Fig. 14.  Structure of a GPU-based spoofing simulator.

Sung-Hyuck Im & Gyu-In Jee GPU-based Real-Time GNSS Simulator 105

http://www.gnss.or.kr

REFERENCES

Akos, D. M. 1997, A software Radio Approach to Global

Navigation Satellite System Receiver Design, PhD

Dissertation, Ohio University

Im, S., Jee, G., Cho, S., & Ko, S. 2007, A novel software GPS

receiver architecture using partial down-conversion,

Proceedings of the 2007 National Technical Meeting of

The Institute of Navigation, January 22-24, 2007, The

Catamaran Resort Hotel, San Diego, CA, pp.702-707

Kaplan, E. D. & Hegarty, C. J. 2005 Understanding GPS:

Principles and Applications. 2nd ed. (Norwood, MA:

Artech House Publisher)

Kirk, D. B. & Hwu, W. W. 2010, Programming Massively

Parallel Processors: A Hands-on Approach (Burlington,

MA: Elsevier and Morgan Kaufmann)

Nvidia KEPLER Architecture, cited 2014 Jul 1, available from:

http://www.nvidia.com/object/nvidia-kepler.html

Sanders, J. & Kandrot, E. 2010, CUDA by Example: An

Introduction to General-Purpose GPU Programming

(Boston, MA: Addison-Wesley)

Thor, J. 1999, Evaluation of a Reconfigurable Computing

Engine for Digital Communication Applications,

Master’s Thesis, Lulea University

Sung-Hyuck Im is a senior researcher in the
KARI(Korea aerospace research institute).
He received Ph.D. degree from Konkuk
University in 2011. He is interested in (Real-
time) Software GNSS receiver, Generation
and processing of navigation signals, Vector-
based signal processing, Anti-Jamming/
Spoofing, Indoor positioning, Navigation

sensor integration, etc.

- 6 -

Kaplan, E. D. & Hegarty, C. J. 2005 Understanding GPS: Principles and Applications. 2nd ed.

(Norwood, MA: Artech House Publisher)
Kirk, D. B. & Hwu, W. W. 2010, Programming Massively Parallel Processors: A Hands-on

Approach (Burlington, MA: Elsevier and Morgan Kaufmann)
Nvidia KEPLER Architecture, cited 2014 Jul 1, available from:

http://www.nvidia.com/object/nvidia-kepler.html
Sanders, J. & Kandrot, E. 2010, CUDA by Example: An Introduction to General-Purpose GPU

Programming (Boston, MA: Addison-Wesley)
Thor, J. 1999, Evaluation of a Reconfigurable Computing Engine for Digital Communication

Applications, Master’s Thesis, Lulea University

Sung-Hyuck Im is a senior researcher in the KARI(Korea aerospace research
institute). He received Ph.D. degree from Konkuk University in 2011. He is
interested in (Real-time) Software GNSS receiver, Generation and processing of
navigation signals, Vector-based signal processing, Anti-jamming, Indoor
location using repeater, Navigation sensor integration, etc.

Gyu-In Jee is a professor in the department of Electronics Engineering at
Konkuk University in Seoul, Korea. He received his Ph.D. in Systems
Engineering from Case Western Reserve University. His research has been
focused on GPS and navigation system. He has worked on several research and
development projects: WLAN based wireless positioning system, Indoor GPS
positioning using GPS repeaters, Software GNSS receiver, IEEE 802.16e based
wireless location system, etc.

Gyu-In Jee is a professor in the department
of Electronics Engineering at Konkuk
University in Seoul, Korea, since 1992. He
received his Ph.D. in Systems Engineering
from Case Western Reserve University in
1989. His research has been focused on
GNSS, autonomous vehicle, and navigation
system. He has worked on several research

and development project: Autonomous ground vehicle
system implementation, Indoor positioning, Software GNSS
receiver, IEEE 802.16e based wireless location system,
precise GNSS system, etc.

