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1. INTRODUCTION

Successful positioning in harsh Global Positioning 

System (GPS) environments has been one of the most 

challenging problems in GPS, and the demand for 

location-based service (LBS) in harsh environments for 

GPS, such as dense urban and indoor environments is 

continuously increasing. To meet the needs for GPS in harsh 

environments, GPS receivers may need a faster and higher 

sensitivity acquisition and tracking functions that can 

produce accurate carrier phase and code phase estimates 

in various GPS signal conditions. In the literature, a number 

of acquisition techniques for weak GPS signals have been 

introduced. For example, a GPS receiver connected to a 

synchronized cellular communication network (Kransner 

1998, van Diggelen 2009) can make use of the downlink 

signal measurements and downlink information from the 
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cellular base station to quickly acquire GPS signals with high 

sensitivity. On the other hand, conventional techniques to 

enhance the acquisition sensitivity and to reduce the mean 

acquisition time (MAT) such as long coherent integration 

and non-coherent accumulation techniques (Parkinson 

et al. 1996) have been continuously studied, and, recently, 

techniques such as parallel signal search, FFT-based signal 

search (Borre et al. 2007), and two-dimensional compressed 

correlator (Kong & Kim 2013) techniques have been 

developed.

To produce accurate measurements of code phase 

and carrier phase of incoming GPS signals, GPS receivers 

employ tracking functions that require initial code phase 

and Doppler frequency estimates with sufficient accuracy. 

In practice, the accuracy required for the initial resolutions 

of the code phase and Doppler frequency are less than a 

half chip and about ten Hertz (Tsui 2005), respectively. 

Since most of the acquisition techniques perform Doppler 

frequency search for incoming GPS signals with a search 

step size about 1/(2T) Hz, where the coherent integration 

time T is usually 1~5 ms, the Doppler frequency estimate 

may have an error of up to 250 Hz, which can be too coarse 

for a carrier phase tracking loop. However, an initial code 
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phase error of up to a half chip can be tolerable for most 

of the code phase tracking functions (Irsigler & Eissfeller 

2003). Therefore, a GPS receiver has a pull-in state between 

the acquisition and tracking states to increase the accuracy 

of the Doppler frequency estimate to a high enough level to 

accurately run carrier phase tracking. In the pull-in state, 

a GPS receiver tries to obtain a fine Doppler frequency, 

carrier phase, and C/N
0
 estimates of an incoming GPS 

signal, which can take about 1.5s (Kelley et al. 2002). To 

improve the pull-in search performance, conventional 

techniques, such as Tsui (2005) and Goiser & Berger (1996), 

perform a fast Fourier transform (FFT) to find the maximum 

frequency component from code wiped-off sample data 

and then utilize the amplitude of the component to obtain a 

fine Doppler frequency estimate. Consecutive fine Doppler 

frequency estimates can be averaged to increase accuracy 

in the presence of noise, but, in general, the conventional 

techniques work well for high C/N
0
. To lessen the noise 

effect on the Doppler frequency estimation, Sagiraju et al. 

(2006) suggest increasing T up to 5 ms, however, the scheme 

requires a smaller initial Doppler frequency estimation 

error than 50 Hz, which, in effect increases the complexity 

of the acquisition state. On the other hand, Zeng & Li (2010) 

suggest a serial Doppler frequency search using correlation 

in the time domain, and employ a curve fitting algorithm 

to find a more accurate Doppler frequency estimate. The 

curve fitting may be able to provide good Doppler frequency 

and carrier phase estimates at the cost of increased 

computational complexity. In general, since a GPS receiver 

does not yet have the knowledge on the received data bit 

in the pull-in state, increasing the accuracy of Doppler 

frequency and carrier phase estimates of weak GPS signals 

can be a complex problem due to the computational 

complexity and algorithmic complexity required to mitigate 

the effect of bit transition. In practice, the carrier phase 

estimation is performed by the phase locked loop in the 

tracking state.

Despite the complexity and importance, there has been 

little attention paid to the pull-in search of GPS receivers 

in the literature. To reduce the computational complexity 

and improve the accuracy of the Doppler frequency and 

carrier phase estimates in the pull-in state, we propose a 

reverse-directional finite rate of innovation (FRI) technique 

with iterative Cadzow denoising applied to consecutive 

coherent auto-correlation function (ACF) outputs to reduce 

the computational complexity in estimating the Doppler 

frequency and carrier phase of an incoming GPS signal 

with high accuracy and to increase noise robustness. The 

complexity of the proposed technique is analyzed and the 

performance of the proposed technique is compared to 

the conventional techniques using numerous Monte Carlo 

simulations.

The rest of this paper is organized as follows. In Section 

2, we introduce a general continuous form expression for 

a coherent ACF output, and in Section 3, we verify that a 

long coherent ACF output for a Doppler frequency can be 

estimated with consecutive short coherent ACF outputs at 

a close Doppler frequency. Section 4 provides the details 

and complexity of the proposed technique that exploits the 

findings in Section 3, and Section 5 shows the analysis of the 

performance of the proposed technique and a performance 

comparison to conventional techniques using numerous 

Monte Carlo simulations. And a conclusion is drawn in 

Section 6.

Throughout this paper, the following conventions are 

used for notation. Vectors or matrices are denoted by 

boldface symbols. Small letters are used for scalars and 

vectors, and capital letters are used for matrices.

2. COHERENT ACF OUTPUT OF GPS SIGNAL

Let r(t) be the frequency down-converted incoming  L1 
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f
IF
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where Q is the number of GPS satellite signals being received, qA ,  q , | | ( 5 kHz)q
Df  , and 

q  are the slowly varying amplitude, code phase, Doppler frequency, and unknown carrier 
phase of the q-th satellite signal, respectively, ( )qD t  and ( )qC t  are the navigation data bit 
signal and Pseudo-Random Noise code signal of the q-th satellite at time t, respectively, and 
n (t) represents an additive white Gaussian noise with two-sided power spectral density (PSD) 

0 / 2N . Note that the data bit and chip rates are (=50bps)bR  and Rc (= 1.023 Mcps), 
respectively, and that the C/A code has code length =1023cL  chips so that the code period is 
only 1( =1T ms). When the coherent integration (correlation) length used in the acquisition 
state is 1= TT L T , where TL  is an integer much larger than 1, and code phase search resolution 
is / 2cT , the detected code phase  q  and Doppler frequency q

Df  at the acquisition state can 
have errors upto / 4cT  and 1/ (4 )T , respectively. Note that the navigation data remains 
unknown in the pull-in state. To detect and track the code phase  q  and Doppler frequency 

q
Df  of the q-th satellite signal using correlation, the receiver generates a prompt replica signal 

ˆ2 ( )ˆ( ) = ( ) , 
qj f f tIF D

q qr t C t e     (2) 

where ̂ q  and ˆ q
Df  are the code phase and carrier frequency estimates made by the receiver’s 

acquisition function, respectively. The receiver integrates the product of ( )r t  and *( )qr t
(complex conjugate of ( )qr t ) over the coherent integration interval T  to see the correlation 

between the two functions. Defining ˆ=  q q  and ˆ= q q
D Df f f , the mathematical 

expression of the ACF output over the two-dimensional space is readily available from Kong 
& Kim (2013). 

comparison to conventional techniques using numerous Monte Carlo simulations. And a 
conclusion is drawn in Section 6. 

Throughout this paper, the following conventions are used for notation. Vectors or 
matrices are denoted by boldface symbols. Small letters are used for scalars and vectors, and 
capital letters are used for matrices.

2. COHERENT ACF OUTPUT OF GPS SIGNAL

Let ( )r t  be the frequency down-converted incoming 1L  GPS coarse acquisition (C/A) 
code signal to an IF frequency IFf , then the complex IF signal can be expressed as 

[2 ( ) ]

=1
( )= ( ) ( ) ( ),

 
 

 
  

Q qj f f tIF qD
q q q q q

q
r t A D t C t e n t                         (1) 

where Q is the number of GPS satellite signals being received, qA ,  q , | | ( 5 kHz)q
Df  , and 

q  are the slowly varying amplitude, code phase, Doppler frequency, and unknown carrier 
phase of the q-th satellite signal, respectively, ( )qD t  and ( )qC t  are the navigation data bit 
signal and Pseudo-Random Noise code signal of the q-th satellite at time t, respectively, and 
n (t) represents an additive white Gaussian noise with two-sided power spectral density (PSD) 

0 / 2N . Note that the data bit and chip rates are (=50bps)bR  and Rc (= 1.023 Mcps), 
respectively, and that the C/A code has code length =1023cL  chips so that the code period is 
only 1( =1T ms). When the coherent integration (correlation) length used in the acquisition 
state is 1= TT L T , where TL  is an integer much larger than 1, and code phase search resolution 
is / 2cT , the detected code phase  q  and Doppler frequency q

Df  at the acquisition state can 
have errors upto / 4cT  and 1/ (4 )T , respectively. Note that the navigation data remains 
unknown in the pull-in state. To detect and track the code phase  q  and Doppler frequency 

q
Df  of the q-th satellite signal using correlation, the receiver generates a prompt replica signal 

ˆ2 ( )ˆ( ) = ( ) , 
qj f f tIF D

q qr t C t e     (2) 

where ̂ q  and ˆ q
Df  are the code phase and carrier frequency estimates made by the receiver’s 

acquisition function, respectively. The receiver integrates the product of ( )r t  and *( )qr t
(complex conjugate of ( )qr t ) over the coherent integration interval T  to see the correlation 

between the two functions. Defining ˆ=  q q  and ˆ= q q
D Df f f , the mathematical 

expression of the ACF output over the two-dimensional space is readily available from Kong 
& Kim (2013). 

where Q is the number of GPS satellite signals being 

received, A
q
, τ

q
,│f

D
q│≤(5 kHz), and 

0 *
2

0

0 (2 )

0

(2 | | )0

1( , ) = ( ) ( )

ˆ= ( ) ( )

sin( ) sin( ( | |))=
sin( )

 

    

 

 

  
 



 

  

  




 





t T

qt

t Tq q j ft
q qt

q q c

c

j ft fT f

R f r t r t dt
T
A D

C t C t e dt w
T

A D fT f T
fT fT

e w

                          (3) 

where ( )q qD t  is assumed as constant qD  for the integration interval T , and 

0

0 =1,

[2 ( ) ] *

0 1 *

0

1= [ ( ) ( )

( )] ( )

1 ( ) ( )

 

 




 



 

 





Qt T

p p p p pt
p p q

pj f f tIF pD
q

t T

qt

w A D t C t
T

e n t r t dt

n t r t dt
T
;

    (4) 

is a complex Gaussian noise with two-sided power spectral density 0 / 2N , since signal 
powers are negligible when compared to the noise power. When  = 1/b bT T R  and when  ,
 , and  f  are small enough, 2 ( , ) 0  R f  indicates that = 1qD , and 2 ( , )<0 R f
indicates that = 1qD . Note that there are several techniques to remove the effect of the 
navigation data signal ( )qD t  from 2( , ) R f ; a number of bit sequences are estimated using 
Kalman filter (Psiaki & Jung 2002), the binary value of ( )qD t  is estimated by testing 
different bit combinations (Petovello et al. 2008), or with the assistance information from the 
cellular base station in the Assisted-GPS system (Kransner 1998, van Diggelen 2009). Since 
figuring out the data ( )qD t  is one of the primary tasks in the tracking state, we neglect the 
effect of the unknown data in this paper. 

3. FREQUENCY ESTIMATION WITH CONSECUTIVE SHORT 
COHERENT ACF OUTPUTS

In this section, we break 2( , ) R f  obtained with a long coherent interval 1T T?  into 

TL  ( 1= /T T ) consecutive 2 ( , ) R f s obtained with short coherent interval 1T  and investigate 
the possibility of precisely estimating the Doppler frequency of ( )r t  with the TL 2 ( , ) R f
s obtained. In the following analysis, we drop the subscript ( ) q  (unless necessary) for 
simplicity in algebraic expressions. 
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q
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carrier phase of the q-th satellite signal, respectively, D
q
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and C
q
(t) are the navigation data bit signal and Pseudo-

Random Noise code signal of the q-th satellite at time t, 

respectively, and n (t) represents an additive white Gaussian 

noise with two-sided power spectral density (PSD) N
0
/2. 

Note that the data bit and chip rates are R
b
(= 50 bps) and R

c
 

(= 1.023 Mcps), respectively, and that the C/A code has code 

length L
c
=1023 chips so that the code period is only T

1
(= 1 

ms). When the coherent integration (correlation) length 

used in the acquisition state is T=L
T
T

1
, where L

T
 is an integer 

much larger than 1, and code phase search resolution is 

T
c
/2, the detected code phase τ

q
 and Doppler frequency 

f
D
q at the acquisition state can have errors upto T

c
/4 and 1/

(4T), respectively. Note that the navigation data remains 

unknown in the pull-in state. To detect and track the code 
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q
 and Doppler frequency f

D
q of the q-th satellite signal 

using correlation, the receiver generates a prompt replica 

signal
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which is a complex Gaussian process with the same PSD to 1
ln  Eq. (6). Note that Eq. (10) 

holds only for a very small 1| | 1 f T = . From Eqs. (7, 9, 10), it is found that  
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which indicates that a long coherent ACF output 1( )  fR f  with a long coherent 

integration interval T and a Doppler frequency estimate ˆ D ff  can be obtained from the 
linear sum of TL  consecutive short coherent ACF outputs 1 ( )lR f  from TL  integration 
segments 1 1[ , ( 1) ]lT l T  ( {0,1, , 1}  Tl R ) of [0, ]T  with a neighboring Doppler frequency 
ˆ
Df , when 1| | 1 / f T=  and 1| | 1 /  ff T=  are satisfied. In other words, Eq. (11b) states 

that it is possible to precisely estimate a long coherent ACF output 1( )  fR f  for a 
Doppler frequency hypothesis using consecutive short coherent ACF outputs 1 ( )lR f
( {0,1, , 1}  Tl R ) with a close Doppler frequency hypothesis. This observation is exploited 
in the proposed technique for an accurate and fast GPS pull-in search. In addition, it should 
be noted that the carrier frequency  f  of  10 1

1 1 1 1( ) =[ ( ), ( ), , ( )]   


LTf R f R f R fR  can be 

estimated by compensating the frequency  f  with  f  which maximizes the linear sum in 
Eq. (11b).

Fig. 1 shows 410  Monte Carlo simulation results demonstrating the estimation accuracy 
of the expression Eq. (11b) for a random Doppler frequency  f  of the incoming signal from 
0 Hz to 250 Hz, when 0/ = 40C N dB-Hz and 5= 2TL . Fig. 1a shows that the result of 

absolute normalized amplitude difference, i.e., 
1 (2 1)1 1

1 1 1=0
(0) ( ) / (0)    L j l fTlT

T l
R L R f e R

for  f  varying from 0  to 250 Hz. Fig. 1b shows that the standard deviation of the Doppler 
frequency difference between the true Doppler frequency and the estimated Doppler 
frequency using Eq. (11b) is small, also. As a result, it is demonstrated that 
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is a complex Gaussian noise with two-sided power spectral density 0 / 2N , since signal 
powers are negligible when compared to the noise power. When  = 1/b bT T R  and when  ,
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indicates that = 1qD . Note that there are several techniques to remove the effect of the 
navigation data signal ( )qD t  from 2( , ) R f ; a number of bit sequences are estimated using 
Kalman filter (Psiaki & Jung 2002), the binary value of ( )qD t  is estimated by testing 
different bit combinations (Petovello et al. 2008), or with the assistance information from the 
cellular base station in the Assisted-GPS system (Kransner 1998, van Diggelen 2009). Since 
figuring out the data ( )qD t  is one of the primary tasks in the tracking state, we neglect the 
effect of the unknown data in this paper. 
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s obtained. In the following analysis, we drop the subscript ( ) q  (unless necessary) for 
simplicity in algebraic expressions. 
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4. FREQUENCY AND PHASE ESTIMATION USING THE PROPOSED 
TECHNIQUE 

There are a number of techniques that can provide a solution for the problem in Eq. (13). 
For example, instead of searching for  f , trivial techniques can be the Discrete Fourier 
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asymptotically unbiased for a very large TL  (Hayes 1996), and the maximum error of the 
FFT-based scheme Eq. (14) is 1/ (2 )T [Hz]. Since the frequency estimation error with the 
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this section, however, we propose a reverse directional FRI technique to increase the 
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4.1 Proposed Reverse Directional FRI Technique
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Fig. 1. Validity of the approximation in Eq. (11b). 
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is the final estimate of the frequency  f  buried in 1( ) fR  found by the proposed reverse 
directional FRI technique. 
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which is the arc-tangent of the frequency compensated and averaged In-phase and 
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is the final estimate of the frequency  f  buried in 1( ) fR  found by the proposed reverse 
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is the final estimate of the frequency  f  buried in 1( ) fR  found by the proposed reverse 
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is the final estimate of the frequency  f  buried in 1( ) fR  found by the proposed reverse 
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is the final estimate of the frequency  f  buried in 1( ) fR  found by the proposed reverse 
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is the final estimate of the frequency  f  buried in 1( ) fR  found by the proposed reverse 
directional FRI technique. 
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is the final estimate of the frequency  f  buried in 1( ) fR  found by the proposed reverse 
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is the final estimate of the frequency  f  buried in 1( ) fR  found by the proposed reverse 
directional FRI technique. 

Once the frequency  f  is estimated, from Eq. (12), the relative phase of the input signal 
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which is the arc-tangent of the frequency compensated and averaged In-phase and 
Quadrature-phase consecutive short coherent ACF outputs. Note that the proposed technique 

which is the arc-tangent of the frequency compensated and 

averaged In-phase and Quadrature-phase consecutive short 

coherent ACF outputs. Note that the proposed technique 

can estimate both the frequency and phase difference 

between the incoming signal r(t) and the receiver replica 

signal, and that when there is no frequency, i.e., δf =0, the 

phase estimate of the proposed technique is similar to that 

of the conventional phase estimation technique.

4.2 Realization and Receiver Complexity

A drawback of the proposed technique for the pull-in 

search maybe the high computational cost for multiple 

SVD’s in the iterative Cadzow denoising. To reduce 

the computational cost, computationally efficient SVD 

algorithms such as Riemannian SVD (R-SVD) and Golub-

Reinsch SVD (GR-SVD), introduced in Chan (1982) can 

be applied as a solution. For an SVD of the matrix A of size    

[(L
T
-L)×(L+1)], R-SVD and GR-SVD require  

 

(a) 16TL

 

(b) 32TL

Fig. 3. Complexity comparison. 
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can estimate both the frequency and phase difference between the incoming signal ( )r t  and 
the receiver replica signal, and that when there is no frequency, i.e., =0 f , the phase 
estimate of the proposed technique is similar to that of the conventional phase estimation 
technique.

4.2 Realization and Receiver Complexity

A drawback of the proposed technique for the pull-in search maybe the high 
computational cost for multiple SVD’s in the iterative Cadzow denoising. To reduce the 
computational cost, computationally efficient SVD algorithms such as Riemannian SVD (R-
SVD) and Golub-Reinsch SVD (GR-SVD), introduced in Chan (1982) can be applied as a 
solution. For an SVD of the matrix A  of size [( ) ( 1)]  TL L L , R-SVD and GR-SVD require   

 2 2
1 = 4( ) 22( 1) 1     TM L L L L

        for L  sufficiently smaller than / 2,TL   (24a) 

 2 2
2 = 4( ) 8( )( 1) 9( 1) 1        T TM L L L L L L L

        for / 2, TL L      (24b) 

 respectively (Golub & van Loan 1996). Assuming = / 4TL L  for Eq. (24a) and = / 2TL L  for 
Eq. (24b), and 1L?  for both cases, we can find that 1 2 / 3M M . Therefore, 1< / 2TL L=  is 
a preferable choice, and the complexity decreases as L  decreases in R-SVD. Letting 
1/ <1/ 2T lL =  and =l TL L , and assuming iN  iterations of Cadzow denoising, the total 
computational complexity for the iterative Cadzow denoising is about

2 3(18 8 4) ,    CD i l l l TM N L    (25) 

where 5iN  is usually observed in experimentations (Blu et al. 2008). Notice that CDM  in 
Eq. (25) is a monotonously increasing function with respect to  , so that smaller   results in 
less computational cost. Fig. 3 shows the result of 410  Monte Carlo simulations for a fixed 

= 50THR  and for various   to estimate the total number of multiplications CDM  in the 
proposed technique employing iterative Cadzow denoising with respect to GPS signal 
strength. Figs. 3a and b show the simulation results for =16TL  and = 32TL , respectively. In 
both figures, 1/ 4 1/ 2   results in a similar total number of multiplications, but = 1/ 8
results in the largest total number of multiplications, which is because the number of 
iterations iN  is increased for smaller  . Overall, the computational cost is the lowest or near 
lowest when = 1/ 3 , so / 3 TL L  is a choice leading to a computationally efficient 
application of the iterative Cadzow denoising algorithm. Therefore, in the following, we use 

/ 3 TL L  for the proposed technique. 

5. PERFORMANCE ANALYSIS AND NUMERICAL SIMULATIONS 

In this section, we compare the performance of the proposed technique and other 
techniques including the conventional technique (Tsui 2005). 
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Fig. 4a shows the standard deviation of frequency estimation errors of the proposed 
technique and other techniques with respect to the carrier to noise density ratio ( 0/C N ). The 
performance of the proposed technique is almost the same to the theoretical bound CRLB 
when 0/C N  is not too weak. Note that when the FFT-based frequency estimation technique 
Eq. (14) is used, the frequency resolution governs the estimation accuracy so that the 64 -
point FFT (i.e., = 64)TL  has twice the constant resolution error of the 128 -point FFT as 
shown in Fig. 4a, where ‘ FN -pt FFT ( FN ms)’ in the legend denote the FN -point FFT from 

FN ms of data. Similarly, the performance of the serial Doppler frequency search scheme 
with coherent correlation length 1=co coT N T ms is lower bounded by the Doppler frequency 
search step size, where = 20coN . In the serial Doppler frequency search simulations, we 
chose the search step size of 103/64 Hz to compare with the 64 -point FFT-based technique. 
When the curve fitting technique (Zeng & Li 2010) is applied to the serial Doppler frequency 
search result obtained with search step size of 1/ 20Hz, the performance is improved and 
shows that it has the same slope to the CRLB in the moderate and high 0/C N  region. Fig. 4a 
shows the performance of the conventional technique (Tsui 2005) also; the conventional 
frequency discriminator uses two consecutive ACF outputs, with coherent integration length 

1 =1T ms, to compute  
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where mI  and mQ  represent the in-phase and quadrature-phase component of the ACF output 
at 1=t mT , and the moving average length of 1N  is assumed. Note that the performance of 
the conventional technique is the worst among the techniques shown in Fig. 4 for 0/C N  not 
high enough, which is due to the short coherent integration length 1T  for each ACF output, 
and that we can expect 3 dB more performance gain when the coherent integration for each 
ACF output is doubled. Note also that the ideal frequency estimate in Eq. (28) does not 
include any measurement error due to the approximation function. After some algebraic 
manipulations, the frequency error variance can be found as
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where mI  and mQ  represent the in-phase and quadrature-phase component of the ACF output 
at 1=t mT , and the moving average length of 1N  is assumed. Note that the performance of 
the conventional technique is the worst among the techniques shown in Fig. 4 for 0/C N  not 
high enough, which is due to the short coherent integration length 1T  for each ACF output, 
and that we can expect 3 dB more performance gain when the coherent integration for each 
ACF output is doubled. Note also that the ideal frequency estimate in Eq. (28) does not 
include any measurement error due to the approximation function. After some algebraic 
manipulations, the frequency error variance can be found as
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where mI  and mQ  represent the in-phase and quadrature-phase component of the ACF output 
at 1=t mT , and the moving average length of 1N  is assumed. Note that the performance of 
the conventional technique is the worst among the techniques shown in Fig. 4 for 0/C N  not 
high enough, which is due to the short coherent integration length 1T  for each ACF output, 
and that we can expect 3 dB more performance gain when the coherent integration for each 
ACF output is doubled. Note also that the ideal frequency estimate in Eq. (28) does not 
include any measurement error due to the approximation function. After some algebraic 
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Notice that when 0/ =45C N dB-Hz the frequency errors of the proposed technique for 
=16TL , =32TL  and the curve fitting technique are about 1 Hz, 0.3 Hz, and 0.8 Hz, 

respectively, and the errors increase much slowly than in the conventional technique as the 
0/C N  decreases. The resulting phase estimation performance of the techniques compared in 

Fig. 4a shows some similarity as shown in Fig. 4b. Note that the phase estimation is 
performed with a shorter data length than the data length used for frequency estimation. For 
example, when the frequency is estimated with FN -point FFT ( FN ) ms, the maximum 
frequency error is 310 / 2 FN Hz with which the phase error can increase to  [rad]. Since a 
phase estimation with an arc-tangent function may result in a large arithmetic error in the 
presence of noise, we limit the maximum possible phase estimation error by taking a shorter 
data length than that for the frequency estimation. In Fig. 4b, a legend, for example, ‘64-pt 
FFT (64 ms) + 32 ms’ denotes the phase estimation with 32 ms of data when frequency 
estimation is performed with = 64TL , and it can be found that a shorter data length for phase 
estimation results in a smaller phase estimation error. Notice that the performance of phase 
estimation with the proposed technique and with the curve fitting technique is much better 
than with other techniques for moderate and strong signals. 

Fig. 4c shows the computational complexity (i.e., the number of complex multiplications) 
of the frequency estimation techniques, such as FN -point FFT-based technique ( = 64FN ),
serial Doppler frequency search technique with = 20coT  ms and search step size 310 / FN Hz, 
conventional technique Eq. (28) with N = 20, and the proposed technique with 16msTL  and 
32ms, discussed in this section. When the sampling rate = 2 = 2 1.023s cf R MHz, the 
computational costs for the frequency estimation techniques can be expressed as

1 2= ( )FFT F s FM N f T log N     (30a) 
=SS s co DFM f T N      (30b) 

1 2 1= ( )conv s sM Nf T log f T     (30c) 

1= ,FRI s T CDM f T L M     (30d) 

where FFTM , SSM , convM , and F RIM  represent the computational complexity of the FN -
point FFT based technique, the serial search technique with coherent integration length coT
testing = / 2 = 32DF FN N  Doppler frequency hypotheses between the Doppler frequency 
hypotheses tested with a smaller coherent integration length 1T  (i.e., 500 Hz), the 
conventional technique Eq. (28) with = 20N , and the proposed technique, respectively. 
Notice that computational complexity for computing the arc-tangent function is not counted 
in the expressions in Eq. (30), and that, for high 0/C N ,

2= 64 (2046 64) = 131328 FFTM log , = 20 2046 32 = 1350360 SSM ,

2= 20 2046 2046 = 450062 convM log ,
2 2 2 2= 2046 16 5 [4 11 22 6 ] 6 [4 15 22 2 ] 2 = 72992           FRIM  for =16TL , where 
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estimation is performed with = 64TL , and it can be found that a shorter data length for phase 
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estimation with the proposed technique and with the curve fitting technique is much better 
than with other techniques for moderate and strong signals. 
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than with other techniques for moderate and strong signals. 
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Hz), the conventional technique Eq. (28) with N=20, 

and the proposed technique, respectively. Notice that 

computational complexity for computing the arc-tangent 

function is not counted in the expressions in Eq. (30), 

and that, for high C=N
0
, M

FFT
=64×(2046+log

2
64)=131328, 

M
SS

=20×2046×32=1350360, M
conv

=20×2046×log
2
2046=450062, 

M
FRI

=2046×16+5×[4×112+22×62]×6+[4×152+22×22]×2=72992 

for L
T
=16, where N

i
=5, and M

FRI
=2046×32+2×[4×212+22×122]

×12+[4×312+22×22]×2=191704 for L
T
=32, where N

i
=2, which 

match the simulation results for C/N
0
=45 dB-Hz shown in 

Fig. 4c.

Obviously, the total complex multiplications of the curve 

fitting technique are larger than the serial search technique 

due to the additional curve fitting process. Furthermore, the 

three figures in Fig. 4 shows that the proposed technique can 

produce much more accurate Doppler frequency and phase 

estimates than other techniques and that the computational 

complexity of the proposed technique is only around 2×105 

multiplications for L
T

 ms of data, while other techniques 

have multiple times of estimation error and computational 

cost in the GPS pull-in state.

6. CONCLUSIONS

It has been found that a reverse directional finite rate 

of innovation technique can be applied to GPS pull-in 

search and improves the accuracy and computational cost 

of the pull-in search in comparison to the conventional 

techniques. Analytical expressions are derived to obtain 

the theoretical estimates of performance improvement and 

computational complexity with the proposed technique. The 

simulations have demonstrated that the proposed technique 

has a performance improvement when SNR is moderate 

or high, and that the improvement becomes significant 

as the resolution of frequency estimation of the proposed 

technique increases linearly as SNR increases, which is 

not possible with the conventional FFT-based frequency 

estimation techniques.  In addition to the improvement 

of the frequency estimation, the proposed technique 

contributes to the accuracy in the phase estimation, and, 

therefore, improves the phase tracking performance of a 

receiver.
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