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1. INTRODUCTION

A precise positioning method using carrier phase 

measurements (CDGPS: Carrier phase Differential GPS) 

shows outstanding navigation performance (several cm 

~ dozens of mm level) (Kaplan & Hegarty 2006), but has 

a problem of ambiguity resolution (Kaplan & Hegarty 

2006). CDGPS is organized in the order of floating solution, 

ambiguity searching, and integer solution (Leick 2004). 

The floating solution is a stage in which a position solution 

and an ambiguity in the floating domain are determined 

ignoring the integer condition of an observation equation 

ambiguity. The ambiguity searching determines an 

ambiguity that satisfies the integer condition of the 

observation equation, from the ambiguity in the floating 

domain and covariance information, through searching. 

The integer solution is a stage in which a position solution 

Performance Improvement of a Floating Solution Using a Recursive Filter
Sung Lyong Cho1, Sang Jeong Lee1, Chansik Park2†

1Department of Electronics Engineering, Chungnam National University, Daejeon 305-764, Korea 
2Department of Electronics Engineering, Chungbuk National University, Cheonju 361-763, Korea

ABSTRACT

In CDGPS, ambiguity resolution is determined by the performance of a floating solution, and thus, the performance needs 
to be improved. In the case of precise positioning at a stationary position, the batch method using multiple measurements 
is used for the accuracy improvement of a position. The position accuracy performance of a floating solution is outstanding, 
but it has a problem of high computation cost because all measurements are used. In this study, to improve the floating 
solution performance of the initial static user in CDGPS, a floating solution method using a recursive filter was implemented. 
A recursive filter estimates the position solution of the current epoch using the position solution of up to the previous epoch 
and the pseudorange measurement of the current epoch. The computation cost of the floating solution method using a 
recursive filter was found to be similar to that of the epoch-by-epoch method. Also, based on actual GPS signals, the floating 
solution performance was found to be similar to that of the batch method. The floating solution using a recursive filter could 
significantly improve the performance of the prompt initial position and ambiguity resolution of the initial static user.

Keywords:	 recursive filter, floating solution, CDGPS, computation cost, static user

in the integer domain is redetermined using the ambiguity 

determined by the searching. In the navigation field, a 

floating solution is determined by the epoch-by-epoch 

method (de Jonge et al. 2000), which has low computation 

cost. As it uses only the measurement of the current epoch, 

the computation cost is low, but the position accuracy 

decreases. However, in the geodetic survey field, to improve 

position accuracy performance, the batch method (Park 

2001), which uses measurements of all epochs, is utilized. 

It uses all the measurements from the previous epoch to 

the current epoch, and thus has a problem of exponentially 

increasing computation cost.

Least SQuare (LSQ) including a recursive filter has been 

generally studied in many fields. In this study, a recursive 

filter was used for the determination of a floating solution 

that includes both a position solution and an ambiguity 

in the floating domain of CDGPS. For the floating solution 

using a recursive filter, a floating solution, which uses the 

position solution of the previous epoch and the pseudorange 

measurement of the current epoch, was defined based on 

a stationary user. The results indicated that the position 

accuracy was improved compared to the epoch-by-epoch 

method, which uses only the pseudorange measurement 
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of the current epoch; and that the computation cost was 

similar to that of the case using a single method, resolving 

the problem of exponentially increasing computation cost 

in the batch method, which uses all measurements.

2. FLOATING SOLUTION IN CDGPS

For the floating solution of CDGPS, a position solution 

and an ambiguity in the floating domain are estimated using 

double differenced code measurement and carrier phase 

measurement. For the double differenced measurements 

in 0 baseline environment, common errors included in 

the measurements (satellite orbit, satellite clock error, 

ionospheric delay, tropospheric delay, and receiver clock 

error) are eliminated. Therefore, the double differenced 

code and carrier phase measurement observation equation 

of the k-th epoch can be expressed as Eq. (1).

the computation cost is low, but the position accuracy decreases. However, in the geodetic 
survey field, to improve position accuracy performance, the batch method (Park 2001), which 
uses measurements of all epochs, is utilized. It uses all the measurements from the previous 
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Least SQuare (LSQ) including a recursive filter has been generally studied in many fields. 
In this study, a recursive filter was used for the determination of a floating solution that includes 
both a position solution and an ambiguity in the floating domain of CDGPS. For the floating 
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where ( )r k  is the double differenced value of the calculated geometric distance between the 
satellite and the user,   is the wavelength, a  is the double differenced ambiguity, and ( )v k  and 

( )w k  are the double differenced code and carrier phase measurement errors. Eq. (2) can be 
obtained by the linearization of Eq. (1). 
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where ( )k  and ( )l k  are the double differenced code and carrier phase pseudorange 
measurements at the linearization reference point, 0 ( )r k  is the calculated double differenced 
distance between the satellite and the linearization reference point, ( )H k  is the single differenced 
matrix of the line-of-sight vector from the linearization reference point to the satellite, and ( )b k  is 
the baseline vector between the reference station and the user. Eq. (2) can be expressed in a 
vector-matrix format, as shown in Eq. (3) (Han et al. 2009). 
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In this study, CDGPS consists of floating solution, ambiguity resolution, and integer 
solution stages. To improve the performance of a floating solution among the three stages, an 
initial position solution and an ambiguity in the floating domain of a stationary user in the 
existing epoch-by-epoch method that uses a single measurement were implemented using a 
recursive filter. 

3. FLOATING SOLUTION USING RECURSIVE FILTER

For a floating solution using the batch method, a position solution and an ambiguity in the 
floating domain are obtained using all the measurements from the previous epoch to the current 
epoch. For the measurement of the N-epoch, N position vectors and one ambiguity vector are 
obtained if a user is in motion. However, if a user is stationary, it becomes a problem of 
obtaining one position vector and one ambiguity vector. In this study, ambiguity resolution is 
mostly performed at the early stage of navigation; and if an ambiguity is once determined, a 
fixed value is used or only a value that changes in combination with the epoch-by-epoch method 
can be obtained. Therefore, a floating solution method using a recursive filter for improving the 
initial floating solution performance of a stationary user is proposed. In the case of a stationary 
user, a measurement model for the N-epoch measurement can be expressed as Eq. (4). The 
subscript b  represents a solution obtained by the batch method (Park 2001). 
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A floating solution can be calculated by applying LSQ to Eq. (4). However, if there are M 
double differenced pseudorange measurements (M+1 satellites), 2MN measurements need to be 
processed, and thus, the computation cost abruptly increases depending on the increase in the 
measurements.

In this study, to use a recursive filter for improving position accuracy and reducing 
computation cost, the observation equation of the N-th measurement using the floating solution 
of the previous epoch (k) and the measurement of the current epoch (k+1) was obtained as shown 
in Eq. (5). The subscript r  represents a solution obtained using a recursive filter. 
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expressing Eq. (5) in a simplified format as shown in Eq. (6) 

and by applying LSQ.
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In this study, a floating solution using a recursive filter utilizes the position solution of up to 
the previous epoch and the pseudorange measurement of the current epoch. It has the advantage 
of constant computation cost, and an accuracy improvement is expected similar to the case using 
all measurements from the position solution of the previous epoch. Therefore, for the 
performance improvement of a floating solution using a recursive filter, improvements in the 
ambiguity searching result at an initial stationary position and the integer solution performance 
of CDGPS could be expected. 

4. PERFORMANCE ANALYSIS 

In this study, the numerical example, navigation performance, and computation cost of the 
floating solution method was examined using actual GPS signals. For the collected signals, 
actual GPS signals were utilized using two NovAtel Propak-V3 GNSS receivers (NovAtel, Inc. 
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Based on the floating solution method, the position solution and ambiguity in the floating 
domain were compared using actual measurements. For the position solution in the floating 
domain, initial epoch-by-epoch method is performed in the first measurement, and thus, the same 
position solution error and floating ambiguity result were observed. 
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In the second measurement, the batch method and the floating solution method using a 
recursive filter had the position solution error and floating ambiguity result that are identical 
down to four decimal places, unlike the epoch-by-epoch method. 

Based on the floating solution method, the position 

solution and ambiguity in the floating domain were 

compared using actual measurements. For the position 

solution in the floating domain, initial epoch-by-epoch 

method is performed in the first measurement, and thus, 

the same position solution error and floating ambiguity 

result were observed.



120    JPNT 3(3), 117-122 (2014)

http://dx.doi.org/10.11003/JPNT.2014.3.3.117

The linearized double differenced code and carrier measurements and measurement matrix 
are as follows. 

  0.663
  0.572

0.190
0.662

(1)   1.041
  0.192

5.426
  4.090

0.952

l

 
 
 
 
 
 
 
 
 
  
 
 
 

,

 0.663
 0.570
0.189
0.663

(2)  1.043
 0.191
5.418

 4.086
0.951

l

 
 
 
 
 
 
 
 
 
  
 
 
 

,

 0.568
0.205
0.069

 0.254
(1) 0.181

0.147
 0.036
 0.165
 0.039



 
  
 
 
 
  
 
 
 
 
 
 
 

,

 0.567
0.212
0.063

 0.267
(2) 0.188

0.148
 0.041
 0.153
 0.032



 
  
 
 
 
  
 
 
 
 
 
 
 

0.672 1.426   0.507
0.323 0.046 0.577

  0.634   0.399 0.445
1.145 0.126   0.369

(1)   1.419   0.997 0.276
  0.039 0.734   0.994

0.545 0.311   0.202
0.488   0.228 1.450

  1.219   0.390   0.945

H

  
    
 
 
 
 



 
 

 










,

0.672 1.426   0.507
0.323 0.046 0.577

 0.634   0.399 0.445
1.145 0.126   0.369

(2)  1.419   0.997 0.276
 0.039 0.734   0.994
0.545 0.311   0.202
0.488   0.228 1.450
 1.218   0.390   0.945

H

  
    
 
 
 
 



 
 

 










Based on the floating solution method, the position solution and ambiguity in the floating 
domain were compared using actual measurements. For the position solution in the floating 
domain, initial epoch-by-epoch method is performed in the first measurement, and thus, the same 
position solution error and floating ambiguity result were observed. 
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In the second measurement, the batch method and the floating solution method using a 
recursive filter had the position solution error and floating ambiguity result that are identical 
down to four decimal places, unlike the epoch-by-epoch method. 
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It was numerically shown that the error of the floating solution method using a recursive 
filter proposed in this study was the same as that of the batch method, and that the floating 
solution method was superior to the epoch-by-epoch method. 

4.2 Floating position result

To examine the floating solution performance of CDGPS, it was compared with a true 
position using the same 300 epoch measurements. Figs. 1, 2, and 3 show the comparison of the 
X-, Y-, and Z-axis navigation errors for the epoch-by-epoch method, batch method, and floating 
solution method using a recursive filter, respectively. 

The floating solution method using a recursive filter proposed in this study had superior 
floating solution performance compared to the existing epoch-by-epoch method, and had nearly 
identical navigation performance compared to the batch method. 

4.3 Computation cost result

The floating solution method using a recursive filter proposed in this study is an algorithm 
for reducing the computation cost of the batch method. To compare the computation cost, the 
computation time of the floating solution was examined using the function of Matlab. The 
epoch-by-epoch & recursive filter methods had the same computation cost in every epoch. 
However, for the batch method, in the case of the same satellite in the N-th epoch, there were N 
times more measurements, and thus, the computation cost increased exponentially. Fig. 4 shows 
the computation time for every measurement depending on the floating solution method. 

As shown in the figure, for the batch method, the measurement size (matrix computation) 
exponentially increased as the epoch increased. The epoch-by-epoch method and the floating 
solution method using a recursive filter had the same computation time in every epoch. The 
average computation times of the epoch-by-epoch and recursive method were similar: 0.005747 
seconds and 0.005968 seconds per epoch, respectively. However, for the batch method, the 
computation time of the 300th epoch was about 33 seconds, which increased substantially. The 
floating solution method using a recursive filter used in this study had similar computation time 
to that of the epoch-by-epoch method, and it is thought to be appropriate for initial ambiguity 
resolution or real-time use. 
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Fig. 1. X-Axis floating position error result. 

 

Fig. 2. Y-Axis Floating Position Error Result. 

 

Fig. 3. Z-Axis floating position error result. 
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Fig. 1.  X-Axis floating position error result.
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Fig. 2. Y-Axis Floating Position Error Result. 

 

Fig. 3. Z-Axis floating position error result. 
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Fig. 2.  Y-Axis Floating Position Error Result.
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Fig. 2. Y-Axis Floating Position Error Result. 

 

Fig. 3. Z-Axis floating position error result. 
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Fig. 3.  Z-Axis floating position error result.
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measurement size (matrix computation) exponentially 

increased as the epoch increased. The epoch-by-epoch 

method and the floating solution method using a recursive 

filter had the same computation time in every epoch. The 

average computation times of the epoch-by-epoch and 

recursive method were similar: 0.005747 seconds and 

0.005968 seconds per epoch, respectively. However, for the 

batch method, the computation time of the 300th epoch 

was about 33 seconds, which increased substantially. The 

floating solution method using a recursive filter used in this 

study had similar computation time to that of the epoch-by-

epoch method, and it is thought to be appropriate for initial 

ambiguity resolution or real-time use.

5. CONCLUSIONS

To determine accurate initial position and ambiguity, a 

stationary user utilizes multi-epoch measurements. For the 

batch method using the existing multi epoch, as the number 

of multi-epoch measurements increases, the computation 

cost increases exponentially due to the increase in the matrix 

size. Thus, it is difficult to use the method for a dynamic 

user, and it has been mostly used for post-processing precise 

positioning. The floating solution method using a recursive 

filter used in this study had performance effects using 

multi-epoch measurements based on the computation cost 

reduction and floating solution accuracy improvement of 

the existing epoch-by-epoch and batch method. The results 

of the performance analysis indicated that the performance 

of the floating solution method was identical to that of the 

batch method, and that the computation cost was similar 

to that of the existing epoch-by-epoch method although 

the multi-epoch measurements increased. In the future, 

the floating solution method using a recursive filter could 

significantly contribute to prompt initial position and 

ambiguity resolution of a dynamic user, and further studies 

on floating solution design using a recursive filter that can 

be used in a dynamic scenario after the initial position of a 

dynamic user are required.
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Fig. 4.  Computation cost result.
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Table 1. Data processing strategy of GPS RTK for long baselines. 

Items Models 
Processing filter 
Measurements 
Ionosphere 
Troposphere 
Tidal effect 

Extended Kalman filter 
Code-carrier phase double difference 
Elimination by IF linear combination 
Estimation with GPT/GMF 
IERS conventions 2010 & FES2004 

Phase center offsets and 
Phase center variations IGS08.atx 
Phase wind up Wu et al. (1993) 
GPT: global pressure and temperature, GMF: global mapping function, 
FES: finite element solutions, IERS: international earth rotation service 
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