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1. INTRODUCTION

A Global Navigation Satellite System (GNSS) provides the 

position, velocity, and time synchronization information of 

a user through the time of arrival of satellite signals and the 

ephemeris extracted from the received signals by receiving 

at least four navigation satellite signals (Borre et al. 2007). 

Representative GNSS includes the Global Positioning 

System (GPS) from the United States. In the early stage, GPS 

was developed for military purposes; but it is currently used 

in various social and economic fields (e.g., administration 

and communication) as well as for military purposes 

since part of the signal (GPS L1 C/A code) has been open 

to the public. As services based on positioning through 
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a mobile device including vehicle navigation have been 

actively provided since the 2000s, demand for positioning 

accuracy that accurately estimates one’s own position 

has continuously increased. Thus, to provide high-quality 

service by improving the positioning performance and 

by overcoming the dependence on GPS from the United 

States, independent GNSS projects have been planned 

and developed, such as Galileo from the European Union, 

COMPASS from China, and GLONASS from Russia (Misra & 

Enge 2006).

Among them, the European Union performed the 

development of a modernized signal of GNSS in cooperation 

with the United States in 2004. The modulation technique 

used for existing GPS L1C is the Binary Phase Shift Keying 

(BPSK) modulation, where the power spectrum is bilaterally 

symmetrical as the main lobe is located at the center 

frequency (1575.42 MHz). The project was the development 

of a common signal in the GPS L1 band and the Galileo E1 

band using this center frequency (1575.42 MHz), and it was 
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designed by separating the main lobe energy by half and by 

moving it from the center frequency on the power spectrum, 

considering the compatibility and interoperability with the 

existing GPS signal. A signal that has been made through 

this project is the Multiplexed Binary Offset Carrier (MBOC). 

Among MBOC modulation techniques, the pilot channel of 

the GPS L1C signal selected the Time-Multiplexed Binary 

Offset Carrier (TMBOC) technique, and Galileo from the 

European Union selected the Composite Binary Offset 

Carrier (CBOC) technique (Avila-Rodriguez et al. 2006, Hein 

et al. 2006).

A signal that has been examined in this study is the CBOC 

(6,1,1/11) signal from the European Union. As mentioned 

earlier, the CBOC signal was designed so that it could 

efficiently share frequency with the existing GPS signal and 

the interference could be reduced; and it is capable of more 

accurate positioning as the distortion of ACF by multipath 

can be reduced due to a sharper main peak of the auto-

correlation function (ACF) compared to that of existing 

BPSK, which is the advantage of the Binary Offset Carrier 

(BOC) signal. However, it also has an ambiguity problem 

due to positive and negative side peaks that BPSK does not 

have, which is the disadvantage of the BOC signal, besides 

the sharp main peak of ACF. The ambiguity problem 

refers to a problem where false lock at the side peaks of 

ACF occurs during signal tracking and thus the location 

at which signal tracking is performed cannot be known. It 

would eventually induce a large positioning error of up to 

300m. Therefore, unlike BPSK, an additional technique for 

eliminating ambiguity is required (Lee et al. 2009).

Representative existing techniques for eliminating 

ambiguity include BPSK-Like (Martin et al. 2003), bump-

jumping (Fine & Wilson 1999), and side-peaks cancellation 

(Chen et al. 2012). In the BPSK-Like technique, to eliminate 

the effect of subcarrier that forms side peaks, single 

sideband auto-correlations are performed in pairs for the 

signals separated on both sides of a main peak; and based 

on this, the peak is tracked using ACF that has been formed 

in a shape similar to that of the ACF of BPSK. In the bump 

jumping technique, separate tracking channels (very early 

& very late) are added to both sides of a main peak at spots 

that are one peak apart from the main peak, and accurate 

tracking of the peak is determined by comparing the size 

of the prompt tracking channel and the sizes of the very 

early & very late tracking channels. Lastly, in the side-peaks 

cancellation technique which is an innovative technique for 

resolving ambiguity, a local replica signal with a waveform 

that is different from that of a received signal is used, and 

it is mixed with the correlation output result to produce an 

unambiguous correlation function, which is then used to 

track the peak. Representative techniques include ASPeCT 

(Julien et al. 2007) and SCPC (Chen et al. 2012), and most 

of the mentioned techniques can be applied to a basic BOC 

signal.

In particular, the ASPeCT technique used a PRN cross-

correlation function (CCF) in order to eliminate the side 

peaks of BOC (n,n). Based on this, in the present study, a 

new CBOC unambiguous function for the improvement of 

signal tracking performance was proposed by significantly 

decreasing side peaks and by partially decreasing the width 

of a main peak further through the calculation of the ACF of 

CBOC and the ACF of PRN.

The contents of this paper are as follows. In Chapter 2, 

a CBOC signal and a correlation function are examined; 

and in Chapter 3, the ACF and CCF of CBOC and PRN are 

analyzed and a new unambiguous correlation function is 

proposed based on this. In Chapter 4, based on simulation, 

the performance of the proposed unambiguous correlation 

function is compared with that of an existing technique. 

Lastly, conclusions are drawn in Chapter 5.

2. SIGNAL MODEL

2.1 Multiplexed Binary Offset Carrier (MBOC) Signal

As mentioned earlier, the MBOC modulated signal was 

planned as part of the modernization of Galileo and GPS 

in order to improve the positioning performance at the 

existing 1575.42 MHz band and to minimize interference 

with the existing GPS. Before explaining the MBOC 

modulated signal, the BOC signal, which is a superordinate 

concept, is explained. The BOC (m,n) signal refers to a 

signal that has been generated by multiplying PRN spread 

code and subcarrier and by modulating it into sine wave 

carrier. Thus, it is defined by two independent variables: 

the subcarrier frequency, fsc (MHz), and the chip rate of the 

Pseudorandom Noise code (PRN code), fc (Mchips/s). m is 

defined as the ratio of subcarrier frequency, fsc, to reference 

frequency, (f0=1.023 MHz), (m = fsc / f0); and n is defined as 

the ratio of PRN code chip rate, fc, to reference frequency 

(n = fc / f0). For example, BOC (2,1) indicates that it has a 

subcarrier frequency of 2.046 MHz, and a PRN code chip 

rate of 1.023 MHz.

MBOC signals are divided into two types: GPS L1C and 

Galileo E1 OS signals, and they are defined by TMBOC and 

CBOC, respectively. Basically, the MBOC (m,m’,k) signal 

consists of two components: BOC (m,1) and BOC (m’,1), 

and k represents the power spectrum ratio of BOC (m,1). In 

general, it is expressed as an MBOC (6,1,1/11) signal, and 
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is generated through the combination of BOC (6,1), which 

is a wide band, and BOC (1,1), which is a narrow band. A 

standardized MBOC power spectrum equation that can 

represent both TMBOC and CBOC is expressed in Eq. (1). In 

this regard, GBOC(1,1) and GBOC(6,1) represent the power spectra 

of normalized BOC (1,1) and BOC (6,1), and are expressed 

in Eq. (2a,b), respectively. Eq. (3) expresses the signal 

waveform by PRN and data. Lastly, the signal of BOC (m,1) 

can be expressed as Eq. (4) (Hein et al. 2006, Fantino et al. 

2008).
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where cl is the l-th PRN code with a value of ±1 and a period 

of L, and pTc
 is the unit size rectangular waveform where the 

width is the chip spacing, Tc.

Unlike the existing BPSK signal, subcarrier modulation 

is performed for the BOC signal. This is because the 

interference can be reduced and the frequency can be 

shared when the existing BPSK spectrum signal energy 

concentrated on the center frequency is symmetrically 

separated based on the center frequency in the case of 

the BOC modulated signal, and because the positioning 

accuracy can be improved by forming ACF with a narrower 

main peak. As a result, the tracking error decreases during 

signal tracking, which improves the final position accuracy. 

However, due to side peaks that the BPSK signal does 

not have, there are multiple false lock points (FLP) in the 

discriminator output for the BOC signal. FLP refers to a 

discriminator zero-crossing point where the discriminator 

output value indicates that it has been synchronized at a 

proper location but in practice, it has been synchronized 

at another peak. Fig. 1 shows the discriminator output 

for BOC (1,1), where four FLPs are observed besides the 

true lock point (TLP) which is the origin. The ambiguity 

problem mentioned earlier refers to a problem where it is 

synchronized at FLP in the signal tracking stage and thus 

the location at which signal tracking is performed cannot 

be known (Julien et al. 2004). MBOC also has this problem, 

similar to the BOC signal. In Chapter 3, ACF for reducing 

the FLP of CBOC is explained among the MBOCs.

2.2 Composite Binary Offset Carrier (CBOC) Signal
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of BOC (6,1) and BOC (1,1) is used as MBOC. In general, it is 

expressed as CBOC(6,1,γ), and γ represents the proportion 

of the BOC (6,1) power component in the total signal power. 

The amplitude proportion of BOC (1,1) in the total signal is 
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Fig. 3 shows the ACF of CBOC (6,1,1/11, ‘+/-’) along with those of BPSK, BOC (1,1), and BOC 

(6,1). The ACFs of the BOC (1,1) and CBOC signals had similar shapes, but the CBOC ACF had a 
sharper main peak than BOC (1,1). It is due to the BOC (6,1) component which is a high-frequency 
component in CBOC, and more precise positioning is enabled based on this. However, similar to the 
existing BOC signal, CBOC also has side peaks, and this causes an ambiguity problem. Therefore, an 
additional synchronization technique is required. Thus, in the next chapter, an unambiguous correlation 
function that can increase precision by significantly decreasing side peaks and by making a sharper main 
peak based on the side-peak cancellation technique is introduced. 
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Fig. 1. Discriminator output for BOC (1,1).
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The ACF of CBOC (6,1,1/11,‘+/-’) is expressed as Eq. (7a). 

In this regard, the ACFs of BOC (1,1) and BOC (6,1) can be 

separately defined as shown in Eq. (7b,c), respectively. TL 

is the PRN code period, k = [2|τ|], and y = [x] is a rounding-

up function that outputs the smallest integer y that satisfies 

y ≥ x.
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Fig. 3 shows the ACF of CBOC (6,1,1/11, ‘+/-’) along with those of BPSK, BOC (1,1), and BOC 

(6,1). The ACFs of the BOC (1,1) and CBOC signals had similar shapes, but the CBOC ACF had a 
sharper main peak than BOC (1,1). It is due to the BOC (6,1) component which is a high-frequency 
component in CBOC, and more precise positioning is enabled based on this. However, similar to the 
existing BOC signal, CBOC also has side peaks, and this causes an ambiguity problem. Therefore, an 
additional synchronization technique is required. Thus, in the next chapter, an unambiguous correlation 
function that can increase precision by significantly decreasing side peaks and by making a sharper main 
peak based on the side-peak cancellation technique is introduced. 
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study is a kind of side-peaks cancellation technique which 

makes new ACF by eliminating or minimizing the ACF side 
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Fig. 3. The normalized correlation function for BOC and CBOC signal.
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signal that consists only of PRN code as well as a local 

signal such as transmission CBOC for tracking an existing 

CBOC signal. The ACF of existing CBOC basically has large 

negative side peaks on both sides of a main peak. This 

characteristic is well represented in Fig. 4, which shows 

the ACF of existing CBOC, the unambiguous correlation 

function of CBOC proposed in the present study, the 

absolute value of CBOC-PRN CCF using PRN for explaining 

this, and the absolute value of existing CBOC ACF. To 

eliminate these side peaks, the Julien technique using a 

PRN cross-correlation function (Julien et al. 2007) was 

applied in the present study. As shown in Fig. 4, for the 

absolute value of the ACF between the CBOC signal and the 

local PRN signal, |RCBOC-PRN |, the trend of the peaks on both 

sides is similar to that of the absolute value of the ACF of 

the existing CBOC, |RCBOC(6,1,1/11,-)|. Thus, an unambiguous 

correlation function was generated using the difference 

between the |RCBOC(6,1,1/11,-)| and the |RCBOC-PRN |, which is the 

absolute value of the ACF with the local PRN signal.

The PRN code sequence used in |RCBOC-PRN | was assumed 

to be the PRN sequence used in E1-C (i.e., pilot channel) for 

signal tracking as shown in Eq. (3), and the auto-correlation 

function with the CBOC signal is expressed in Eq. (8). In this 

regard, triα
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As shown in Fig. 4, the proposed unambiguous correlation function, ProposedR , has significantly 

smaller side peaks than the existing CBOC ACF CBOCR , and has a sharper main peak than the existing 
correlation function. Therefore, it is expected that the signal tracking performance would be improved due 
to the sharp main peak, and that ambiguity where it is synchronized at side peaks could be reduced. 

In addition, the discriminator output for CBOC signal tracking can be expressed as shown in Fig. 5. 
The discriminator used in this study was a noncoherent early minus late power (NELP) discriminator. 
When compared to the ACF of the existing CBOC, FLP where a discriminator crosses zero points due to 
side peaks disappeared, and the slope of the linear section with TLP became larger. Thus, improvement in 
the signal tracking performance is expected in the same noise environment. 
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where it is synchronized at side peaks could be reduced.

In addition,  the discriminator output for CBOC 

signal tracking can be expressed as shown in Fig. 5. The 
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minus late power (NELP) discriminator. When compared 

to the ACF of the existing CBOC, FLP where a discriminator 

crosses zero points due to side peaks disappeared, and the 

slope of the linear section with TLP became larger. Thus, 
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The final output value through the discriminator is 

expressed in Eq. (13), and the early-late discrimination 

values of the I and Q channels, IE, IL, QE, and QL, are 

expressed in Eq. (12), respectively. In this regard, when D is 

the navigation data, Δ is the early-late spacing (with ∆ ≤ Tc), 

X(t) is the spread sequence, X
~

(t) = X(t)*h(t) is the filtered 

spread sequence, and h(t) is the impulse response of the 

receiver input filter, the raised cosine filter can be defined 
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The discriminator operates until the output of the discriminator, ( )d  , becomes 0, by the numerically 
controlled oscillator within the delayed lock loop (DLL). Eventually, through the calculation of the cross-

correlation function between the BOC signal and the unmodulated PRN code, CBOC PRNR  , during signal 
tracking, the possibility of false lock at the side peaks can be significantly decreased by significantly 
reducing the side peaks; the slope of the linear section of the discriminator increases by partially 
decreasing the width of the main peak further; and the signal tracking performance is improved by 
eliminating the FLP. 
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Fig. 4. The normalized correlation function for CBOC. Fig. 5. Discriminator outputs of correlation functions.
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where fe is the frequency error; θe is the phase error; Ni,E, Ni,L, 

Nq,E, and Nq,L are the noise components included in the early 

and late components of the I and Q channels; and A is the 

amplitude of the signal.

The discriminator operates until the output of the  

discriminator, d(τ), becomes 0, by the numerically controlled  

oscillator within the delayed lock loop (DLL). Eventually, 

through the calculation of the cross-correlation function 

between the BOC signal and the unmodulated PRN code, 

RCBOC-PRN , during signal tracking, the possibility of false 

lock at the side peaks can be significantly decreased by 

significantly reducing the side peaks; the slope of the 

linear section of the discriminator increases by partially 

decreasing the width of the main peak further; and the 

signal tracking performance is improved by eliminating the 

FLP.
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Table 1. Simulation environment.

Parameter Value
BL

TI

∆
TC

-1

10 Hz
1 ms
1/24 [TC]
1.023 MHz

Fig. 6. Tracking error standard deviation (TESD).
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For the simulation shown in Fig. 7, [N=1, α1=0.5, ϕ1=0,π] 

was used, and the performance was similar to that of the 

existing technique. In addition, simulations were performed 

by increasing the multipath component using the following 

parameters when N =2 and N =3, as shown in Figs. 8 and 

9, respectively, In the case of N =2, [α1=0.2, ϕ1=0,α2, ϕ2=π, 

τ2=0.5Tc] and [α1=0.2, ϕ1=π, α2=0.5, ϕ2=0, τ2=0.5Tc] were used; 

and in the case of N =3, [α1=0.3, ϕ1=0.3, ϕ2=0, τ2=0.3Tc, α3=0.5, 

ϕ3=0, τ3=0.7Tc] and [α1=0.3, ϕ1=π, α2=0.3, ϕ2=π, τ2=0.3Tc, 

α3=0.5, ϕ3=π, τ3=0.7Tc] were used. As a result, there was a case 

where the performance was improved compared to that of 

the existing technique, but there also were cases where the 

performance deteriorated or the performance was similar. 

Considering the main peak characteristics of the ACF of 

the proposed technique, it was expected that the resolution 

would be superior due to the narrow ACF main peak of the 

multipath. However, it is thought that the performances 

shown in Figs. 7-9 were observed because the model of 

the received signal is based on the nonlinear combination 

of the convolution term of RCBOC(τ) and channel and the 

convolution term of RCBOC-PRN(τ) and channel, rather than 

the convolution form of RProposed(τ) and channel, as shown 

in Eq. (9). Also, it is thought that the proposed technique is 

more robust to the effect of noise, rather than performance 

improvement relevant to multipath.

5. CONCLUSIONS

In this study, an unambiguous correlation function 

using a pseudo correlation function was proposed for the 

tracking of CBOC signals. Based on the fact that the side 

peak of CBOC ACF and the CCF of a pseudo correlation 

function show similar trends, the height of the side peak 

was significantly decreased using the difference between 

the values obtained by taking an absolute value. The result 

of the tracking error standard deviation simulation showed 

that the proposed unambiguous correlation function 

had superior signal tracking performance in various CNR 

environments compared to the existing technique, and the 

result of the multipath error envelope simulation showed 

that the performances were similar in terms of multipath 

delay. Therefore, studies on the robustness to multipath 

delay are needed in the future based on the additional 

supplementation of the unambiguous function.
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