
JPNT 4(3), 115-122 (2015)
http://dx.doi.org/10.11003/JPNT.2015.4.3.115

Copyright © The Korean GNSS Society

JPNT Journal of Positioning,
Navigation, and Timing

http://www.gnss.or.kr   Print ISSN: 2288-8187   Online ISSN: 2289-0866

1. INTRODUCTION

Global Positioning System (GPS) is a system that has 

been developed by the U.S. Department of Defense for 

military purposes. GPS has been actively used in the 

civilian sector since 2000, and it is currently used in various 

fields. A GPS receiver is vulnerable to jamming signals 

because it receives signals transmitted from satellites at 

about 20,000 km above the Earth and because all the signal 

characteristics (e.g., frequency, modulation method, and 

code) are open to the public (Kaplan & Hegarty 2006). 

The recent GPS jamming from North Korea was a simple 
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type of jamming signal, but it is a strong threat since all 

the position and time information based on GPS could be 

disturbed (Hu & Wei 2009). Jamming signals could induce 

significant disturbance in the civilian fields based on GPS 

as well as jamming for the military weapon systems. Thus, 

preparation for this incident is needed. For the removal 

of jamming signals, various studies have been performed 

such as an antenna-based anti-jamming technique and a 

digital signal processing technique (Abimoussa & Landry 

2000, Amin & Sun 2005). To apply a technique for the 

removal of jamming signals, satellite signals that are smaller 

than thermal noise and jamming signals that are relatively 

significantly large need to be converted into digital signals 

without distortion and sent to a jamming removal signal 

processing part. Therefore, to implement an anti-jamming 

function, the RF part of a Global Navigation Satellite System 

(GNSS) receiver needs to have low-noise characteristics as 
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well as wider dynamic range and linearity compared to an 

existing general GNSS receiver (Moulin et al. 1998). In this 

study, high-sensitivity/high-resolution RF ASIC with a wide 

dynamic range was designed and manufactured so that it 

could be used for the implementation of a jamming signal 

removal function, and an anti-jamming device based on 

digital signal processing that removes narrowband jamming 

signals in the frequency domain was implemented and the 

performance was verified.

2. DESIGN OF RF ASIC FOR AN ANTI-
JAMMING GNSS RECEIVER

In a general GNSS receiver, the RF front-end appropriately 

amplifies and filters satellite signals received at a signal 

strength of about -130 dBm, converts them into digital 

signals using analog-digital converter (ADC) with effective 

number of bits (ENOB) of 1.5 ~ 2, and sends them to a digital 

signal processing part. For satellite signals, the change in 

the strength of received signals depending on the altitude of 

satellites is not large (less than 3 dB), and the quantization 

error can be reduced to less than 1 dB through an appropriate 

use of AGC. Thus, 2 bit (ENOB) ADC is sufficient for a general 

GNSS receiver (Parkinson & Spilker 1996). However, an anti-

jamming GNSS receiver needs to quantize both satellite 

signals and jamming signals without distortion and send 

them to a digital signal processing part even when jamming 

signals that are more than 50 ~ 70 dB larger than satellite 

signals are introduced to the receiver along with satellite 

signals. Therefore, RF ASIC to be implemented should have 

a wide dynamic range of more than 50 dB and have high-

resolution and low-noise characteristics. In general, an anti-

jamming receiver uses 12 ~ 14 bit ADC.

2.1 Analysis of the Dynamic Range of RF ASIC

Fig. 1 shows the dynamic range of RF ASIC to be designed 

in the present study (Moulin et Al. 1998). To implement an 

anti-jamming function, the full-scale power of ADC (Padc) 

was set to 4 dBm, and the signal-to-noise ratio (ADC SNR) 

was set to 54 dB. In the environment shown in Fig. 1, KTB 

is -110.8 dBm, and the ADC output (noise out) has a value 

of -47.8 dBm due to the gain and noise characteristics of 

the antenna and the RF/IF end. In this regard, KTB is the 

reference thermal noise of IF bandwidth (B) at a room 

temperature (T=290 K), and K is the Boltzmann constant. 

Therefore, the dynamic range of the designed RF ASIC was 

51.8 dB (IDR = Padc - Noise out), and the jamming-to-signal 

ratio (JSR) (one CW) was 72.5 dB.

2.2 Design of High-Sensitivity/High-Resolution RF ASIC

Fig. 2 shows the functional block diagram of the high-

sensitivity/high-resolution RF ASIC for the implementation 

of an anti-jamming function. The RF ASIC consists of RF 

front end, baseband filter that can adjust gain, fractional-N 

phase-locked-loop (PLL), high-speed 14-bit ADC, and 

ADC sampling clock generation part. The RF ASIC has two 

channels; and each channel has a bandwidth of 2~24 MHz 

for the GPS L1/L2/L5 bands (1575.42/1227.6/1176.45 MHz), 

a bandwidth of 14/22 MHz for the GLONASS L1/L2 bands 

(1602.0/1246.0 MHz), and a bandwidth of 32/28 MHz for 

the GALILEO E1/E5A bands (1575.42/1176.45 MHz). Also, 

it was designed to have a wide dynamic range by applying 

high-resolution ADC, RF attenuation block, and variable 

gain mode low-noise amplifier (LNA). For the output signal 

of the ADC, Low-Voltage Differential Signaling (LVDS) 

was applied in order to reduce power consumption and 

Fig. 1. Design of the dynamic range of RF ASIC.
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to improve noise characteristics. To maintain isolation 

between each block, low-dropout (LDO) was separately 

implemented for each channel and block.

2.2.1 RF Front-End and Baseband Filter

In general, a GNSS receiver needs to receive signals 

that are lower than thermal noise, and thus it should 

have low-noise characteristics. Also, linearity is also very 

important for implementing an anti-jamming function. 

Fig. 3 shows the structure of cascode type LNA, and the 

feedback components RF and CF play a role in expanding 

the frequency characteristics. To achieve noise and input 

matching in LNA at the same time, the conventional 

inductive source degeneration technique was used. To 

optimize noise figure, external input matching networks 

(L1 and L2) need to be properly selected. The input side 

transistor (M1) provides bias through the internal constant 

current reference. When a very large jamming signal 

is introduced, LNA is operated in a low-gain mode by 

operating M3 in Fig. 3, and saturation of the RF front end 

is prevented by operating the RF attenuation block. When 

it is operated in a low-gain mode, a low noise figure can be 

obtained without affecting the input/output impedance. 

Also, by integrating the RF attenuation block, a burden for 

the linearity of the next end mixer can be reduced.

The input impedance of the front-end mixer was set to 

50 Ω in order to enable the connection of an external SAW 

filter. The input of the mixer was implemented based on 

common-source (CS) and common-gate (CG) stage in order 

to convert a single-ended signal into a differential signal 

while having a wide frequency band.

The baseband amplifier (BBA) consists of 7th order 

Butterworth filter, programmable amplifier, output buffer, 

and DCOC subloop. The dynamic range of the baseband 

was implemented to have a value of -12 ~ 52 dB in order to 

include all the GNSS bands.

2.2.2 Fractional-N Frequency Synthesizer

Each band of the GPS, GLONASS, and GALILEO systems 

has different frequencies, and thus a frequency synthesizer 

should include all these bands. For this purpose, a 

broadband frequency resonant circuit is needed in one VCO 

and LC-VCO. To make a simple circuit, reduce the area of 

silicon, and implement a broadband frequency resonator, 

switched capacitor topology was used. Thus, LC-VCO 

including 7-bits capacitor banks was designed, and the AFC 

technique was used (Ko et al. 2005). AFC consists of three 

blocks: coarse tuning, fine tuning, and dividing blocks. The 

coarse tuning block corrects VCO frequency using a binary 

search algorithm. In this regard, an optimal capacitor bank 

code is searched by comparing the intermediate capacitor 

bank and the target frequency. To reduce the time for coarse 

tuning, a binary search algorithm is used. When coarse 

tuning is completed, the fine tuning block performs tuning 

based on typical PLL. The proposed VCO has a frequency 

band of 1.95 ~ 3.45 GHz.

2.2.3 14-Bit ADC

Major performance factors for the implementation of 

an anti-jamming function include the dynamic range, 

resolution, and noise characteristics of ADC. In this study, 

ADC with a 14-bit resolution and a bandwidth of 50MHz 

was designed and implemented.

The RF front-end has a direct conversion structure, and 

thus the Nyquist sampling clock of the ADC becomes half 

of the low-IF structure. The RF ASIC designed in this study 

Fig. 2. The proposed 2-channel GNSS receiver architecture.

Fig. 3. Circuit diagram of LNA.
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generates 50MHz of clock in ADC PLL, and is sufficient to 

be used as a sampling clock and to satisfy the GNSS signal 

band with a maximum of 24 MHz.

ADC consists of sample-and-holder (S/H), pipe-

line stages, bias block, clock generator, and digital 

error correction logic block. The input of the ADC was 

implemented based on a clock bootstrapping switch in 

order to reduce total harmonic distortion (Fayomi et al. 

2004). Fig. 4 shows the ADC structure designed in this study. 

To implement 14bit resolution and low power consumption, 

MDAC with a scaling stage structure of 3-3-3-3-3-3-2 was 

selected. Also, each ADC stage provides digital code for 

error correction.

3. RF ASIC MEASUREMENT RESULT

The designed RF ASIC was manufactured in a standard 

0.18-μm complementary metal-oxide semiconductor 

Fig. 4. ADC structure.

Fig. 5. Fabricated chip and package micro-photograph.

Fig. 6. The measured S-parameter and noise figure of LNA.

Fig. 7. The measured full-chain gain and NF of RF ASIC.
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(CMOS) process. Fig. 5 shows the chip micro-photograph, 

and it has an area of 5.6 x 5.0 mm including the ESD PAD 

frame. For the package, a QFN package was used. As shown 

in Fig. 6, the input reflection coefficient was less than -10 

dB for GPS L1 (high band) and GPS L2/L5 (low band) 

regardless of the high-gain mode or the low-gain mode. The 

gains were 15.4 dB (high-band) and 17.1 dB (low-band). 

As shown in Fig. 7, the total gain was 70 dB, but it was 40 

dB when there was a jamming signal. The noise figure was 

3.2 dB when there was no jamming signal and 4.0 dB when 

there was a jamming signal.

As shown in Fig. 8, the input P1 dB was -16 dBm and the 

IIP3 was -7.5 dBm when there was a jamming signal. Also, 

the dynamic range of the BBA was between -12 dB and 52 

dB, and the gain can be adjusted at a 1 dB step. The VCO 

was between 1.95 GHz and 3.45 GHz, and the tuning range 

was 55% as shown in Fig. 9. The measured phase noise was 

-90.9 dBc/Hz for the GPS L1 band at an offset of 100 kHz. 

The power consumption of the dual-channel RF ASIC was 

1.16 W at an input voltage of 2.1 V. Table 1 summarizes the 

results of the measurement.

4. ANTI-JAMMING FUNCTION
IMPLEMENTATION AND PERFORMANCE 
VERIFICATION

A test bed for the verification of the narrowband anti-

jamming function using RF ASIC was implemented as 

shown in Fig. 10, and the performance was verified. When 

general RF parts are used, seven to eight chip parts are 

needed for each channel, and additional matching circuits 

Fig. 9. The measured output frequency range of VCO.

Fig. 8. The measured dynamic range of BBA.

Table 1. Performance summary of RF ASIC.

Block Parameter Performance Unit
Process CMOS 0.18 um
Power 1.16 @2.1V W

RF front-end Frequency bands GPS L1, L2, L5
GLONASS L1, L2
GALILEO E1, E5A

-

NF
@default gain

3.2 dB

Gain dynamic range > 81 dB
Input P1dB @jam. mode -16 dBm

PLL Frequency range 1.95 ~ 3.45 GHz
Resolution 15.3 Hz
Phase noise -80/-94/-114

@ 10 k, 100 k, 1 M offset
dBc/Hz

Fractional spur -57 @290 kHz dBc
ADC Bit resolution 14 Bit

SNDR/SFDR 54/63 dB/dBc
Sampling clock 50 MHz
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and filter parts are needed. The designed RF ASIC was RF/

IF two-channel ASIC, and thus only a small number of chip 

parts were needed and the numbers of filters and passive 

elements for matching decreased significantly. The area of 

the RF part of the designed anti-jamming GNSS receiver was 

about 50% of that of an existing component RF structure.

4.1 Experiment Environment

Fig. 11 shows the experiment environment for the anti-

jamming performance verification. The experiment was 

performed using GPS simulator and signal generator and 

ProPak-V3 GNSS receiver (NovAtel Inc.). The experiment 

was conducted using an anechoic chamber. GPS signals and 

jamming signals generated through the GPS simulator and 

signal generator were transmitted through each antenna, 

and the navigation result was measured by receiving the 

signals using a GPS antenna. Each antenna was installed 

in the anechoic chamber, and equipment was installed 

outside so that there would be no jamming signal.

4.2 Experiment Results

When the anti-jamming function was off (w/o anti-

jamming) using the test bed, for the GNSS simulator, the input 

value of the receiving antenna was set to -120 dBm similar to 

an actual environment. When satellite reception was normally 

performed, the size of the jamming signal generated through 

the signal generator was increased, and the size of the jamming 

signal was measured based on the moment at which the 

receiver loses satellite navigation (3D navigation). The same 

experiment was conducted when the anti-jamming function 

was on (w/ anti-jamming function), and the size of the 

jamming signal was measured. Then, the difference between 

the sizes of the jamming signals for the two experiment results 

would be the anti-jamming performance.

Table 2 summarizes the results of the same experiment 

depending on the type of jamming signal (CW, AM, FM, 

and Sweep CW). These results were obtained by calculating 

the input value of the receiving antenna considering the 

antenna cable loss after measuring the size of the jamming 

signal. In the case of CW, the JSR was 42 dB when only 

the NovAtel receiver was used, and it was 77 dB when the 

anti-jamming function was used. Thus, the anti-jamming 

performance was improved by 35 dB.

5. CONCLUSION

In this study, RF ASIC for the implementation of an anti-

Fig. 10. Test bed for anti-jamming performance evaluation.

Fig. 11. Anechoic chamber experiment. (a) Internal environment (b) External environment

(a) (b)

Table 2. The performance of jamming suppressor.

Type of 
jamming

signal

NovAtel receiver (dBm) Anti-
jamming

performance 
(dB)

Remark
w/o anti-
jamming
function

w/ anti-
jamming
function

CW -78 -43 35
AM -75 -41 34 depth 90%, AM rate 

100 Hz
FM -80 -44 36 dev 2 MHz, FM rate 

100 Hz
Sweep CW -79 -46 33 1574.42 

MHz~1576.42 MHz,
Point 101, step dwell 
2 ms

Pulse -78 -44 34 Pulse width 450 ms, 
Pulse Period 500 ms
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jamming function was designed and manufactured, and the 

anti-jamming performance was verified through a test bed. 

The RF ASIC can be applied to GPS L1/L2/L5, GLONASS L1/

L2, and Galileo E1/E5A signal bands, and has two channels 

in a chip. It has high-speed ADC with a wide dynamic range 

and high resolution, and the linearity was increased without 

affecting the input/output impedance by implementing 

two gain modes of a low-noise amplifier. The general 

characteristics of the RF ASIC and the JSR performance of 

the receiver were examined by manufacturing and verifying 

RF ASIC and by verifying the anti-jamming performance 

through making a test bed. With the use of the test bed 

using the RF ASIC, the anti-jamming performance for 

the narrowband and fractional band of the GPS receiving 

system could be increased by more than about 35 dB by 

installing it between the receiving antenna and the receiver 

in a plug-in form. The RF ASIC developed in this study 

needs improvements in the dynamic range and noise 

characteristics in order to improve the JSR performance, 

but it is thought that the developed RF ASIC would be useful 

for improving the anti-jamming performance of an existing 

GNSS receiver by making a smaller anti-jamming device or 

for the development of a small GNSS receiver with an anti-

jamming function. Table 3 compares the performances of 

existing products and the RF ASIC designed in this study.
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