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1. INTRODUCTION

Accurate mobile node (MN) localization for pedestrians 

has been an investigational hot potato in the last two 

decades owing to emergence of location based service 

(LBS) market. Several solutions have been used through 

global positioning system (GPS), cellular, and other wireless 

networks. Actually, GPS can provide accurate location 

solution in open area. In indoor and urban area, however, 

GPS is not to be a sure method due to signal blockage or 

signal pollution. Cellular signal can be used in both indoor 

and outdoor space for MN localization. But cellular signal-

based localization solution cannot be used for accurate 

LBSs such as road guidance, navigation for a blind, etc. 

because of its inaccuracy. For accurate localization of a MN, 

several wireless networks such as ultra wideband, chirp 
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spread spectrum (CSS), ultrasonic wave, etc. have been 

adopted (Kolodziej & Hjelm 2006, Cho & Kim 2013).

To localize a MN in a wireless network, one or a 

combination of range measurements, angle measurements 

and signal strength measurements obtained from time-

of-arrival round-trip-of-flight time-difference of-arrival, 

angle-of-arrival, and received signal strength indicator 

approaches can be used with reference nodes (RN) whose 

location is known. This work is a result of research on the 

range measurement-based localization method.

Various local izat ion methods can be classi f ied 

according to use of a model-based filter, that is filter-free 

localization method (FfLM) (Huang et al. 2001, Cheung 

et al. 2006, Cho & Kim 2013, Cho et al. 2013) and filter-

based localization method (FbLM) (Lee et al. 2004, Huerta 

& Vidal 2009, Banani et al. 2013). FfLMs include several 

iterative methods and linear closed-form solution methods. 

These methods can provide accurate location solution if 

the range measurements do not include any error terms. 

In real environments, however, the range measurements 

contain several error terms including non-line-of-sight 
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(NLOS) error. Therefore, the FfLM cannot estimate accurate 

location and walking trajectory of a pedestrian possessing 

a MN in real indoor or urban area. On the other hand, the 

FbLM can estimate comparatively accurate location in 

NLOS situations as compared with the FfLM (Banani et al. 

2013). The reason is that the FbLM estimates the location 

solution based on the current dynamic model of a MN and 

measurement, while the FfLM does that only based on the 

measurement. The dynamic model can reduce the effect of 

the NLOS error in the measurement. Therefore, the jump 

error caused by the NLOS error in the FbLM is smaller than 

the FfLM. This factor supports the main idea of this paper.

In some of the conventional localization methods, it 

has been assumed that the range measurements consist 

of LOS propagation and additive white Gaussian noise 

(AWGN) (Huang et al. 2001, Cheung et al. 2006, Cho & 

Kim 2013, Cho et al. 2013). However, this idealized case 

does not occur in typical real environment. So, there’s no 

help for performance reduction when these methods are 

used in NLOS situations. Different approaches have been 

investigated for performance improvement. For example, 

the measurement error is modeled as the addition of a 

bias and AWGN (Najar et al. 2004, Lin & Pingzhi 2006). 

The bias error is then augmented in the state variables of 

a filter. Another approach is that NLOS error distribution 

is modelled as additive Rayleigh (Huerta & Vidal 2009). 

In this approach, NLOS error is also augmented in the 

state variables to be estimated in a filter. In some other 

approaches, the range measurement is modeled as the sum 

of a line-of-sight (LOS) component, AWGN and NLOS error 

designed using multipath scattering model (AI-Jazzar et 

al. 2002, Kong 2009, Banani et al. 2013). In more approach, 

NLOS error is treated as a measurement fault (Sturza & 

Brown 1990, Lee et al. 2004). Then, a method for detecting 

the jump and ramp errors caused by NLOS errors is 

presented. Based on the designed NLOS error model, it has 

been tried to estimate the measurement error for accurate 

localization in NLOS situations. However, it is difficult to 

design NLOS error exactly.

In this paper, a novel FbLM is presented to mitigate the 

NLOS error. This method does not rely on the NLOS error 

model except that NLOS error has a positive real value at all 

times. The main idea of this method is from the concept of 

differential GPS (DGPS) (Farrell & Barth 1999). In reference 

stations of which locations are known, the measurement 

errors including NLOS error can be estimated based on 

the known location information of the reference stations. 

In the applications of wireless localization, however, it is 

impossible to set up a mobile reference station in a MN 

without additional accurate reference localization system. 

This technical barrier can be weakened by the advantage of 

the FbLM, that is the localization result of the FbLM can be 

used as the reference solution of a reference station. From 

this, it can be expected that the channel-wise NLOS error 

can be estimated using the residual of the localization filter. 

Consequently, NLOS error in the range measurement can 

be mitigated. This is the first contribution of this paper.

The system model of the localization Filter must fit the 

representation of a pedestrian’s motions such as being 

stationary, walking or running in a straight line with 

constant velocity, accelerating, making a turn, etc. for all 

of the time. Therefore, a single dynamic model cannot 

represent all of the motions. In target tracking applications, 

an interacting multiple model (IMM) filter has been used 

(Bar-Shalom et al. 2005). In (Banani et al. 2013), model 

selection algorithm for two dynamic models is presented. 

However, the accelerating/decelerating/turning time 

of a pedestrian is short and a pedestrian’s motion is 

comparatively slow in the generality of cases. From this fact, 

a single model called the constant velocity model is adopted 

for the system model in the localization filter in this paper. 

When a target pedestrian makes turns or changes walking 

speeds, the estimation error of the localization filter may 

be increased. That’s driving residual of the filter high. By 

detecting the residual’s growth, in this paper, the process 

noise covariance matrix is set as a bigger value. This means 

that the current filter more trusts the measurement than the 

filter dynamic model. That is, the change of the pedestrian’s 

motion is reflected in the localization filter with a single 

model. This is the second contribution of this paper.

The performance of the presented method is evaluated 

by simulation. In the simulation, the result of the presented 

method is compared with the iterative least squares (ILS) 

method representing the FfLMs and the extended Kalman 

filter (EKF) representing the FbLMs. Also, it is shown that 

the performance of the presented method is more accurate 

than the conventional methods.

The rest of the paper is organized as follows. Section 2 

describes the EKF-based wireless localization with range 

measurement. The two-step EKF-based enhance wireless 

localization is presented in Section 3 with the simulation 

results in Section 4. Finally, Section 5 gives conclusions.

2. EKF-BASED WIRELESS LOCALIZATION 
WITH RANGE MEASUREMENT

2.1 Range Measurement

The Euclidean range measurement rk
j in 2-dimensional 
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where T denotes the location sampling duration. Also, it can be set equal to the range 
measurement taking period. X denotes the state vector, u  denotes the velocity state variable 
of u , F denotes the system matrix, and kw  denotes the process noise which has a zero-mean 
white Gaussian noise with the covariance matrix Q. 

As shown in Eq. (1), the range measurement equation is nonlinear. In this paper, 
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where δX denotes the error state vector for EKF, n denotes the number of RNs, H denotes the 
measurement matrix, kv  is the measurement noise which has a zero-mean white Gaussian 
noise with the following covariance matrix 
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where   denotes the standard deviation of the range measurement noise.   depends on the 
PHY characteristics of wireless communication infra used for measuring the range between a 
MN and RNs. 

In Eq. (3), j
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Based on the system and measurement matrices designed in Eqs. (2) and (3), the 
following EKF procedure is iterated whenever a set of range measurements is obtained 
(Brown & Hwang 1997). 
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where T denotes the location sampling duration. Also, it can be set equal to the range 
measurement taking period. X denotes the state vector, u  denotes the velocity state variable 
of u , F denotes the system matrix, and kw  denotes the process noise which has a zero-mean 
white Gaussian noise with the covariance matrix Q. 

As shown in Eq. (1), the range measurement equation is nonlinear. In this paper, 
therefore, the EKF is used. Measurement equation can be designed as 
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where δX denotes the error state vector for EKF, n denotes the number of RNs, H denotes the 
measurement matrix, kv  is the measurement noise which has a zero-mean white Gaussian 
noise with the following covariance matrix 
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where   denotes the standard deviation of the range measurement noise.   depends on the 
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where T denotes the location sampling duration. Also, it can be set equal to the range 
measurement taking period. X denotes the state vector, u  denotes the velocity state variable 
of u , F denotes the system matrix, and kw  denotes the process noise which has a zero-mean 
white Gaussian noise with the covariance matrix Q. 

As shown in Eq. (1), the range measurement equation is nonlinear. In this paper, 
therefore, the EKF is used. Measurement equation can be designed as 
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where δX denotes the error state vector for EKF, n denotes the number of RNs, H denotes the 
measurement matrix, kv  is the measurement noise which has a zero-mean white Gaussian 
noise with the following covariance matrix 
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where   denotes the standard deviation of the range measurement noise.   depends on the 
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where T denotes the location sampling duration. Also, it can be set equal to the range 
measurement taking period. X denotes the state vector, u  denotes the velocity state variable 
of u , F denotes the system matrix, and kw  denotes the process noise which has a zero-mean 
white Gaussian noise with the covariance matrix Q. 

As shown in Eq. (1), the range measurement equation is nonlinear. In this paper, 
therefore, the EKF is used. Measurement equation can be designed as 
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where δX denotes the error state vector for EKF, n denotes the number of RNs, H denotes the 
measurement matrix, kv  is the measurement noise which has a zero-mean white Gaussian 
noise with the following covariance matrix 
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where   denotes the standard deviation of the range measurement noise.   depends on the 
PHY characteristics of wireless communication infra used for measuring the range between a 
MN and RNs. 

In Eq. (3), j
kr̂  is the range data estimated using the current localization solution as 

22 )ˆ()ˆ(ˆ m
k

jm
k

jj
k yyxxr  .                      (5) 

Based on the system and measurement matrices designed in Eqs. (2) and (3), the 
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(Brown & Hwang 1997). 
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where T denotes the location sampling duration. Also, it can be set equal to the range 
measurement taking period. X denotes the state vector, u  denotes the velocity state variable 
of u , F denotes the system matrix, and kw  denotes the process noise which has a zero-mean 
white Gaussian noise with the covariance matrix Q. 

As shown in Eq. (1), the range measurement equation is nonlinear. In this paper, 
therefore, the EKF is used. Measurement equation can be designed as 
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where δX denotes the error state vector for EKF, n denotes the number of RNs, H denotes the 
measurement matrix, kv  is the measurement noise which has a zero-mean white Gaussian 
noise with the following covariance matrix 

))()(( 22
  



n

diagR  ,                   (4) 
where   denotes the standard deviation of the range measurement noise.   depends on the 
PHY characteristics of wireless communication infra used for measuring the range between a 
MN and RNs. 

In Eq. (3), j
kr̂  is the range data estimated using the current localization solution as 
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(Brown & Hwang 1997). 
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where T denotes the location sampling duration. Also, it can be set equal to the range 
measurement taking period. X denotes the state vector, u  denotes the velocity state variable 
of u , F denotes the system matrix, and kw  denotes the process noise which has a zero-mean 
white Gaussian noise with the covariance matrix Q. 

As shown in Eq. (1), the range measurement equation is nonlinear. In this paper, 
therefore, the EKF is used. Measurement equation can be designed as 
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where δX denotes the error state vector for EKF, n denotes the number of RNs, H denotes the 
measurement matrix, kv  is the measurement noise which has a zero-mean white Gaussian 
noise with the following covariance matrix 
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where   denotes the standard deviation of the range measurement noise.   depends on the 
PHY characteristics of wireless communication infra used for measuring the range between a 
MN and RNs. 

In Eq. (3), j
kr̂  is the range data estimated using the current localization solution as 
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Based on the system and measurement matrices designed in Eqs. (2) and (3), the 
following EKF procedure is iterated whenever a set of range measurements is obtained 
(Brown & Hwang 1997). 
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where T denotes the location sampling duration. Also, it can be set equal to the range 
measurement taking period. X denotes the state vector, u  denotes the velocity state variable 
of u , F denotes the system matrix, and kw  denotes the process noise which has a zero-mean 
white Gaussian noise with the covariance matrix Q. 

As shown in Eq. (1), the range measurement equation is nonlinear. In this paper, 
therefore, the EKF is used. Measurement equation can be designed as 
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where δX denotes the error state vector for EKF, n denotes the number of RNs, H denotes the 
measurement matrix, kv  is the measurement noise which has a zero-mean white Gaussian 
noise with the following covariance matrix 
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where   denotes the standard deviation of the range measurement noise.   depends on the 
PHY characteristics of wireless communication infra used for measuring the range between a 
MN and RNs. 

In Eq. (3), j
kr̂  is the range data estimated using the current localization solution as 
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where T denotes the location sampling duration. Also, it can be set equal to the range 
measurement taking period. X denotes the state vector, u  denotes the velocity state variable 
of u , F denotes the system matrix, and kw  denotes the process noise which has a zero-mean 
white Gaussian noise with the covariance matrix Q. 
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where δX denotes the error state vector for EKF, n denotes the number of RNs, H denotes the 
measurement matrix, kv  is the measurement noise which has a zero-mean white Gaussian 
noise with the following covariance matrix 
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Instead of the EKF, various nonlinear filters can be used such as unscented Kalman filter, 
particle filter, etc. 

It is difficult to consider the NLOS error as one of state variables to be estimated in the 
FbLMs because the NLOS error has a temporally uncorrelated property. However the effect 
of the NLOS error in the FbLMs may be reduced by relying on the filter dynamic model. The 
smaller the process noise covariance matrix is set, the higher the dependence on the filter 
dynamic model becomes. When the speed or walking direction of the test personnel changes 
rapidly, however, the estimates of the filter have no choice but to have time-delay errors. 
Therefore, it is important to set the process noise covariance matrix properly in the single 
model-based filter. 
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where Tm
k

m
k yx ][   is the location estimation error, j

k  is the range estimation error caused 
by the location estimation error, and j

kr  is the error free range data. 
By substituting Eqs. (1, 12) into Eq. (9), the residual vector of the filter can be 

represented in detail as 

kkk

n
k

k

n
k

k

n
k

k

n
k

n
k

kk

n
k

n
k

n
k

kkk

n
k

k

n
k

k

k

UEN

u

u

r

r

ur

ur

r

r

r

r










































































































































111

11111

11

ˆ

ˆ

~

~



















.                     (13) 

� (9)

Time propagation:

	






















n
k

n
k

kk

k

rr

rr

ˆ~

ˆ~ 11

 .          (9) 

Time propagation: 
QFFPP T

kk 
1 , and               (10) 

kk XFX ˆˆ
1 


 .       (11) 

Instead of the EKF, various nonlinear filters can be used such as unscented Kalman filter, 
particle filter, etc. 

It is difficult to consider the NLOS error as one of state variables to be estimated in the 
FbLMs because the NLOS error has a temporally uncorrelated property. However the effect 
of the NLOS error in the FbLMs may be reduced by relying on the filter dynamic model. The 
smaller the process noise covariance matrix is set, the higher the dependence on the filter 
dynamic model becomes. When the speed or walking direction of the test personnel changes 
rapidly, however, the estimates of the filter have no choice but to have time-delay errors. 
Therefore, it is important to set the process noise covariance matrix properly in the single 
model-based filter. 
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It is difficult to consider the NLOS error as one of state variables to be estimated in the 
FbLMs because the NLOS error has a temporally uncorrelated property. However the effect 
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smaller the process noise covariance matrix is set, the higher the dependence on the filter 
dynamic model becomes. When the speed or walking direction of the test personnel changes 
rapidly, however, the estimates of the filter have no choice but to have time-delay errors. 
Therefore, it is important to set the process noise covariance matrix properly in the single 
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3. ADAPTIVE FILTER-BASED ENHANCED WIRELESS 
LOCALIZATION 

 
3.1 NLOS Error Mitigation using Filter Residual 

 
Eq. (5) can be expanded as 

j
k

j
k

m
kj

k

m
k

j
m
kj

k

m
k

j
j

k

m
k

m
k

jm
k

m
k

jj
k

r

y
r

yyx
r

xxr

yyyxxxr














 






 22 ))(())((ˆ

                  (12) 

where Tm
k

m
k yx ][   is the location estimation error, j

k  is the range estimation error caused 
by the location estimation error, and j

kr  is the error free range data. 
By substituting Eqs. (1, 12) into Eq. (9), the residual vector of the filter can be 

represented in detail as 

kkk

n
k

k

n
k

k

n
k

k

n
k

n
k

kk

n
k

n
k

n
k

kkk

n
k

k

n
k

k

k

UEN

u

u

r

r

ur

ur

r

r

r

r










































































































































111

11111

11

ˆ

ˆ

~

~



















.                     (13) 

� (11)

Instead of the EKF, various nonlinear filters can be used 

such as unscented Kalman filter, particle filter, etc.

It is difficult to consider the NLOS error as one of state 

variables to be estimated in the FbLMs because the NLOS 

error has a temporally uncorrelated property. However the 

effect of the NLOS error in the FbLMs may be reduced by 
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relying on the filter dynamic model. The smaller the process 

noise covariance matrix is set, the higher the dependence 

on the filter dynamic model becomes. When the speed or 

walking direction of the test personnel changes rapidly, 

however, the estimates of the filter have no choice but to 

have time-delay errors. Therefore, it is important to set 

the process noise covariance matrix properly in the single 

model-based filter.

3. ADAPTIVE FILTER-BASED ENHANCED 
WIRELESS LOCALIZATION

3.1 NLOS Error Mitigation using Filter Residual

Eq. (5) can be expanded as
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where [δxk
m,δyk

m]T is the location estimation error, εk
j is the 

range estimation error caused by the location estimation 

error, and rk
j is the error free range data.

By substituting Eqs. (1, 12) into Eq. (9), the residual vector 

of the filter can be represented in detail as
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Time propagation: 
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Instead of the EKF, various nonlinear filters can be used such as unscented Kalman filter, 
particle filter, etc. 

It is difficult to consider the NLOS error as one of state variables to be estimated in the 
FbLMs because the NLOS error has a temporally uncorrelated property. However the effect 
of the NLOS error in the FbLMs may be reduced by relying on the filter dynamic model. The 
smaller the process noise covariance matrix is set, the higher the dependence on the filter 
dynamic model becomes. When the speed or walking direction of the test personnel changes 
rapidly, however, the estimates of the filter have no choice but to have time-delay errors. 
Therefore, it is important to set the process noise covariance matrix properly in the single 
model-based filter. 
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where Tm
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k yx ][   is the location estimation error, j

k  is the range estimation error caused 
by the location estimation error, and j

kr  is the error free range data. 
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where NK denotes the channel-wise NLOS error vector 

contained in the measurement vector, EK denotes the 

channel-wise range estimation error vector caused by the 

location estimation error, and UK denotes the channel-wise 

measurement noise vector.

The sequence of UK has a zero-mean Gaussian noise 

property and the measurement error covariance matrix 

in the filter is in charge of it. If the location error state in 

the filter is observable, EK may converge into a zero vector 

with time. In the residual vector, of course, the range 

estimation error cannot be disappeared. However, the effect 

of the NLOS error in the filter may be reduced by relying 

on the filter model as mentioned in the previous Section. 

So, it is assumed that EK can be ignored in this paper. By 

considering the NLOS error property that is always positive 

real value, consequently, the channel-wise NLOS error can 

be estimated using the filter residual vector as follows:
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where nj ,,2,1  , and   is determined in the light of the PHY characteristics of wireless 
communication infra. 

That is, if the channel-wise residual is small than the standard deviation of the range 
measurement noise, the NLOS error estimate is set equal to zero by considering kU  in Eq. 
(13), unless, the NLOS error is estimated as the absolute value of the filter residual. 

Fig. 1 shows the system structure utilizing the channel-wise NLOS error mitigation 
method in epoch-by-epoch localization. The residual vector is compensated before the 
measurement update of the state vector as 
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location for time sample k . In this paper, a single constant velocity model is used in the 
localization filter. When the speed or walking direction of the test personnel changes rapidly, 
the estimates of the filter have no choice but to have time-delay errors because of using the 
single model. However, it can be seen in Eq. (13) that the filter must provide location 
solution as accurate as possible for estimating the NLOS error accurately using the filter 
residual. For this, the filter residual is reused in this paper after mitigating the NLOS error. 

When time-delay errors occur in the filter, kE  in the residual contains the effect. That is, 
the rapid change of the speed or walking direction of the test personnel can be confirmed by 
checking the following Euclidean distance of the residual vector (EDRV). 
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PHY characteristics of wireless communication infra.
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3.2 Process Noise Covariance Matrix Tuning using Filter 

Residual

Here, the goal is to tune the process noise covariance 

matrix for estimating the best location for time sample k. In 

this paper, a single constant velocity model is used in the 

localization filter. When the speed or walking direction of 

the test personnel changes rapidly, the estimates of the filter 

Fig. 1.  System structure that utilize the channel-wise NLOS error mitigation 
method in epoch-by-epoch localization.
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have no choice but to have time-delay errors because of 

using the single model. However, it can be seen in Eq. (13) 

that the filter must provide location solution as accurate as 

possible for estimating the NLOS error accurately using the 

filter residual. For this, the filter residual is reused in this 

paper after mitigating the NLOS error.
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contains the effect. That is, the rapid change of the speed or 
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checking the following Euclidean distance of the residual 
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where γ is set equal to ξk
2 if ξk is larger than a threshold(β) 

which is set heuristically, unless γ is set equal to 1.

If γ  is set equal to ξk, the filter more relays on the 

measurement than the model. As a result, the change of the 

state variables can be estimated rapidly.

4. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed 

adaptive filter-based enhanced wireless localization method, 

simulation was performed. An example scenario that has 

typical characteristics of a pedestrian’s motion, is used for 

demonstrating the localization performance. The working 

space is 100 m × 100 m with four RNs at the corners, that is at 

(0.01, 0.01), (100.0, 0.01), (100.0, 100.0) and (0.01, 100.0) m. 

It is assumed that the PHY of wireless communication infra 

Fig. 2.  True trajectory of a mobile node, instantaneously estimated locations and velocities using the ILS, EKF, presented adaptive filter 1 and presented 
adaptive filter 2. (a) estimated locations (b) expanded figure of the estimated locations

(a) (b)

(c)
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is CSS that has good ranging performance. Based on the PHY 

characteristics of CSS, the error of the range measurements 

and NLOS error were set as

	

where   is set equal to 2
k  if k  is larger than a threshold(  ) which is set heuristically, 

unless   is set equal to 1. 
If   is set equal to k , the filter more relays on the measurement than the model. As a 

result, the change of the state variables can be estimated rapidly. 
 

4. PERFORMANCE EVALUATION 
 

In order to evaluate the performance of the proposed adaptive filter-based enhanced 
wireless localization method, simulation was performed. An example scenario that has 
typical characteristics of a pedestrian’s motion, is used for demonstrating the localization 
performance. The working space is 100 m × 100 m with four RNs at the corners, that is at 
(0.01, 0.01), (100.0, 0.01), (100.0, 100.0) and (0.01, 100.0) m. It is assumed that the PHY of 
wireless communication infra is CSS that has good ranging performance. Based on the PHY 
characteristics of CSS, the error of the range measurements and NLOS error were set as 
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where randn  denotes a normally distributed random number with zero mean and covariance 
1. 

The range measurement is generated according to the above errors. All the simulations 
use α = 1.0, β = 1.5 and T = 1.0s. The units of the position and velocity in each direction of 
the 2D Cartesian coordinate are measured in m and m/s, respectively. The presented filters 
and the EKF are initialized by the ILS method at the first epoch. 

The true trajectory of a MN, along with an instantaneous estimation of locations and 
velocities of the MN are illustrated in Fig. 2. As shown in this figure, the trajectory consists 
of standstill, constant velocity, making a turn, etc. Therefore, it is difficult to describe the 
motion of a MN by using a single dynamic model. Under these circumstances, the ILS 
method causes large errors by reflecting the NLOS errors intactly because it estimates the 
locations only using the measurements without any model, as shown in Fig. 2. The EKF-
based localization method, on the other hand, yields the error reduced location solutions in 
spite of the NLOS error presence, compared with the ILS method. 

The adaptive filter 1 estimates / compensates the NLOS error using the filter residual 
and the adaptive filter 2 tunes the process noise covariance matrix using the residual of the 
adaptive filter 1. Fig. 2b shows that the presented two adaptive FbLMs estimate the more 
accurate location solutions than the EKF-based localization method. Also, Fig. 2c shows that 
the velocity estimate of the adaptive filter 2-based localization method is faster than the other 
methods in a situation where the velocity or moving direction of the MN changes quickly. 

For convenient comparison, the errors of the instantaneous estimated locations are 
shown in Fig. 3, with the associated estimation results from ILS- and EKF-based localization 
methods. As shown in Fig. 3a the performance of the FbLMs is better than the FfLM. 
Moreover, the presented adaptive FbLMs has enhanced performance as contrasted with the 
EKF-based localization method. For analyzing the localization accuracy from different 
localization methods, the Root Mean Square Error (RMSE) of 1,000 localization solutions is 
used. 
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where   is set equal to 2
k  if k  is larger than a threshold(  ) which is set heuristically, 
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If   is set equal to k , the filter more relays on the measurement than the model. As a 

result, the change of the state variables can be estimated rapidly. 
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In order to evaluate the performance of the proposed adaptive filter-based enhanced 
wireless localization method, simulation was performed. An example scenario that has 
typical characteristics of a pedestrian’s motion, is used for demonstrating the localization 
performance. The working space is 100 m × 100 m with four RNs at the corners, that is at 
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where randn denotes a normally distributed random 

number with zero mean and covariance 1.

The range measurement is generated according to the 

above errors. All the simulations use α = 1.0, β = 1.5 and 

T= 1.0s. The units of the position and velocity in each 

direction of the 2D Cartesian coordinate are measured in m 

and m/s, respectively. The presented filters and the EKF are 

initialized by the ILS method at the first epoch.

The true trajectory of a MN, along with an instantaneous 

estimation of locations and velocities of the MN are 

illustrated in Fig. 2. As shown in this figure, the trajectory 

consists of standstill, constant velocity, making a turn, etc. 

Therefore, it is difficult to describe the motion of a MN by 

using a single dynamic model. Under these circumstances, 

the ILS method causes large errors by reflecting the NLOS 

errors intactly because it estimates the locations only using 

the measurements without any model, as shown in Fig. 2. 

The EKF-based localization method, on the other hand, 

yields the error reduced location solutions in spite of the 

NLOS error presence, compared with the ILS method.

The adaptive filter 1 estimates / compensates the NLOS 

error using the filter residual and the adaptive filter 2 tunes 

the process noise covariance matrix using the residual 

of the adaptive filter 1. Fig. 2b shows that the presented 

Fig. 3.  Comparison of the estimated locations using different localization methods. (a) location estimation error (b) RMSE of the estimated location (c) RMSE 
of the estimated location without NLOS error.

(a) (b)

(c)
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two adaptive FbLMs estimate the more accurate location 

solutions than the EKF-based localization method. Also, 

Fig. 2c shows that the velocity estimate of the adaptive 

filter 2-based localization method is faster than the other 

methods in a situation where the velocity or moving 

direction of the MN changes quickly.

For convenient comparison, the errors of the instantaneous 

estimated locations are shown in Fig. 3, with the associated 

estimation results from ILS- and EKF-based localization 

methods. As shown in Fig. 3a the performance of the FbLMs 

is better than the FfLM. Moreover, the presented adaptive 

FbLMs has enhanced performance as contrasted with the 

EKF-based localization method. For analyzing the localization 

accuracy from different localization methods, the Root Mean 

Square Error (RMSE) of 1,000 localization solutions is used.
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method causes large errors by reflecting the NLOS errors intactly because it estimates the 
locations only using the measurements without any model, as shown in Fig. 2. The EKF-
based localization method, on the other hand, yields the error reduced location solutions in 
spite of the NLOS error presence, compared with the ILS method. 

The adaptive filter 1 estimates / compensates the NLOS error using the filter residual 
and the adaptive filter 2 tunes the process noise covariance matrix using the residual of the 
adaptive filter 1. Fig. 2b shows that the presented two adaptive FbLMs estimate the more 
accurate location solutions than the EKF-based localization method. Also, Fig. 2c shows that 
the velocity estimate of the adaptive filter 2-based localization method is faster than the other 
methods in a situation where the velocity or moving direction of the MN changes quickly. 

For convenient comparison, the errors of the instantaneous estimated locations are 
shown in Fig. 3, with the associated estimation results from ILS- and EKF-based localization 
methods. As shown in Fig. 3a the performance of the FbLMs is better than the FfLM. 
Moreover, the presented adaptive FbLMs has enhanced performance as contrasted with the 
EKF-based localization method. For analyzing the localization accuracy from different 
localization methods, the Root Mean Square Error (RMSE) of 1,000 localization solutions is 
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Fig. 3b shows the RMSEs for the ILS-, EKF-, adaptive 

filter 1- and adaptive filter 2-based localization methods. 

This figure gives the comparison with the ILS- and EKF-

based localization methods. The presented methods 

are significantly more accurate within the context of this 

simulation. Fig. 3c shows the RMSEs in the situation where 

the NLOS error absents. When the MN moves with constant 

velocity, the RMSEs of the location estimates from the 

FbLMs are smaller than the ILS. Also, the performance 

among the FbLMs may seem similar. The peaks of the 

FbLMs are near corners of the trajectory from Fig. 2a. This 

phenomenon is caused by the single model-based filtering. 

To reduce this error factor, the process noise covariance 

matrix is tuned in the adaptive filter 2. It can be seen that 

the adaptive filter 2 can reduce the error factor slightly. 

However, the results show that the limit of the single model-

based filtering, that is the peak errors cannot be eliminated 

in the single model-based filter.

In Fig. 4, the performance of the NLOS error estimation 

using the filter residual can be analyzed. Fig. 4a shows 

the channel-wise NLOS error and the estimates from the 

adaptive filter 1. For convenient analysis, the result figure for 

the channel 1 is expanded in Fig. 4b. As shown in this figure, 

the filter residual-based NLOS error estimates in epoch-by-

epoch localization are so accurate in comparison with true 

NLOS error that the NLOS error can be compensated almost 

perfectly in the presence of noise. It is directly attributable 

to the results of the adaptive filter 1-based localization as 

shown in Figs. 2 and 3.

To verify the usefulness of the adaptive filter 2, the EDRV 

Fig. 4.  Estimated channel-wise NLOS error in epoch-by-epoch localization. (a) channel-wise NLOS error and estimates (b) expanded figure.

(a) (b)

Fig. 5.  EDRV after mitigating the NLOS error and velocities in x- and 
y-directions.
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of the adaptive filter 1 is analyzed in Fig. 5. On the whole, it 

can be seen that the EDRV over the constant velocity course 

is less than 1.0 and the EDRV after changing the velocity or 

moving direction is larger than 2.0. That is, the suitability of 

the constant velocity model for the current moving situation 

can be analyzed using the EDRV. Based on this, the 

threshold for changing the process error covariance matrix 

is set equal to 1.5 in this simulation.

Finally, the averages of the estimated location/velocity 

RMSE using different localization methods are calculated 

as denoted in Table 1. In circumstances where the NLOS 

error exists such as indoor or urban area, the EKF-based 

localization method can provide more accurate location 

solution than the model-free localization methods. 

However, the performance enhancement of the EKF-

based localization method has limit due to the NLOS error. 

The presented adaptive FbLMs can overcome the limit by 

mitigating the NLOS error. The localization errors of the 

adaptive filter 1 and adaptive filter 2 are 34.97784% and 

22.76997% of that of the EKF, respectively. In the situation 

where the NLOS error absents, the model-free localization 

methods can yield accurate solutions. However, the 

estimation errors of the single model-based localization 

methods may be increased as shown in Fig. 3. Fortunately, 

the adaptive filter 2 can provide comparatively accurate and 

stable solutions without reference to the NLOS error.

It can be noted that, a drawback of the presented 

adaptive filter is that a single model is used. In the 

applications to the pedestrian’s localization, a more model, 

constant acceleration model, can be adapted. To utilize two 

models in a filter, an IMM filter-like adaptive filter or model 

selection algorithm must be used. Consequently, more 

enhanced localization methods can be expected based on 

the multiple models by considering the application targets.

5. CONCLUSIONS

In this paper, a novel NLOS error mitigation method 

based on the filter with a single constant velocity dynamic 

model and range measurement was developed. It was 

revealed that the residual of the localization filter contains 

the NLOS error and the absolute value of the residual in 

epoch-by-epoch localization can be accurate estimate of 

the NLOS error. By subtracting the NLOS error estimate 

from the range measurement, the accuracy of localization 

is improved. This method does not rely on the NLOS error 

scattering models. However, the single dynamic model-

based filter causes time-delay estimation error when the 

speed or moving direction of a target mobile node changes 

rapidly. To reduce this error, a process noise covariance 

matrix tuning method is presented based on the residual 

of the NLOS error mitigated filter. The proposed methods, 

although they are very simple, provide a good performance 

by comparing with the conventional localization methods 

– iterative least squares- and extended Kalman filter-based 

localization methods. It can be expected that the proposed 

methods is well utilized to various applications of accurate 

wireless localization in NLOS error situations.
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