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1. INTRODUCTION

A positioning method using radio frequency (RF) was 

used to identify the location of soldiers in emergency during 

the World War II for the first time. In the Vietnam War, a 

global positioning system (GPS) was introduced. Since then, 

GPS has been used in various commercial areas from 1990s. 

Although GPS is the most widely used positioning system 

in outdoor environments, it is limited to be used in indoor 

environments (Pahlavan et al. 2002, Sayed et al.  2005, Fang 

& Lin 2008).

Thus, it is highly important to develop indoor positioning 

technologies using RF (Sayed et al. 2005). Indoor positioning 

technologies can be utilized in various fields such as 

commercial, military, and public safety (Gustafsson & 

Gunnarsson 2005). For example, in commercial fields, 

demand on tracking locations of children, the elderly, and 

visually impaired people has increased consistently in 
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households and hospitals. In public safety and military fields, 

it is necessary to have a system that can track locations of 

policemen, fire fighters, and soldiers who perform missions 

in indoor environments (Sayed et al. 2005).

Furthermore, recent location tracking technologies have 

been utilized in context-aware computing (Hightower & 

Borriello 2001) and location based services usefully. As 

examples of applications, asset tracking, context-aware 

computing, pervasive computing, wireless access security, 

and mobile advertisement (Yunos et al. 2003) can be found 

and various personal robotics applications are also included 

(Jensfelt 2001).

In general, positioning technologies are classified into 

device-oriented and network-oriented technologies. The 

device-oriented technology is to determine a location 

by receiving signals transmitted from infrastructures at 

a mobile device. The network-oriented technology is to 

determine a location by receiving signals transmitted from 

mobile devices at sensors in network infrastructures (Cook 

& Das 2004). The device-oriented technology has higher 

hardware requirements of mobile devices than those of the 

network-oriented technology. However, since the device-

oriented technology can determine a location by device 
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itself rather than by infrastructures, it can have an advantage 

of controlling location information. GPS is one of the 

most well-known device-oriented location determination 

systems, but it is limited to be used in indoor environments. 

In contrast with the device-oriented technology, mobile 

devices at the network-oriented technology are required 

to create a simple and appropriate signals, which are less 

complex requirements that devices have in a relative sense 

(Stella et al. 2012).

As a technology that determines a location of emitter, Time 

of Arrival (TOA), Time Difference of Arrival (TDOA), Angle 

of Arrival (AOA), and Received Signal Strength (RSS) can 

be found. Patwari et al. (2005) compared four techniques of 

Cramer Rao Bound with regard to cooperative transmitters. 

However, these techniques have a weakness to determine 

a location of non-cooperative transmitters. This is because 

non-cooperative transmitters transmit various types of 

signals irregularly in order to avoid a detection of their own 

locations. Thus, determination of location of non-cooperative 

transmitters remains challenging (Berdanier & Wu 2013).

The location tracking technologies using RF signals have 

been studied consistently and some related products have 

been launched in market. However, few studies have been 

conducted on system design or implementation except for 

studies on algorithms. Thus, this study discusses issues 

that can occur while designing and implementing systems 

that track locations of RF emitters using sensors with array 

antennas based on network-orientation as shown in Fig. 1, 

and introduces a solution to the issues.

2. RF EMITTER LOCALIZATION SYSTEM 
WITH ARRAY ANTENNA

2.1 AOA Algorithm

In this section, the general principle of AOA estimation 

is explained and characteristics of AOA estimates are 

analyzed. The AOA estimation technique can be classified 

into spectrum estimation and parameter estimation 

techniques. As the spectrum estimation technique, Capon 

Minimum Variance and MUltiple Signal Identification 

and Classification (MUSIC) can be found. The typical 

parameter estimation techniques are Estimation of Signal 

Parameter via Rotational Invariance Technique (ESPRIT) 

and Maximum Likelihood (ML). The advantages and 

drawbacks of each technique are listed in Table 1 and 

among them, MUSIC and ESPRIT are two of the best 

performance techniques compared to complexity (Ramos 

et al. 1999). However, ESPRIT can only be applied to linear 

array antenna so currently MUSIC has been most widely 

used. Thus, this study estimates an angle of arrival using the 

MUSIC. 

The mathematical model that expresses the MUSIC 

technique is as follows: When M signals are incident to 

an array antenna with L elements, input signal 
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where  is t  refers to the i -th signal vector and  ,i i A  refers to a direction vector 

according to the i -th signal elevation angle i  and azimuth i , and  tn  refers to a noise 
vector, which is assumed to have normal distribution. Covariance matrix of the input signal 
can be calculated via Eq. (2) and  H  refers to the Hermitian of the matrix. 
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where S  is a covariance matrix of the signal and 2  is a noise covariance. 
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where if the ˆ HASA  matrix rank M  is smaller than the number L  of elements of array 
antenna, ˆ HASA  minimum Eigen value becomes 0 and it has L M  multiplicities.  If it is 
expressed as an equation, it can produce a matrix of Eigen-decomposition as shown in Eq. (4) 
(Strang 1980). 
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where si(t) refers to the i-th signal vector and A(θi, ϕi)  refers to 

a direction vector according to the i-th signal elevation angle 

θi  and azimuth ϕi, and n(t) refers to a noise vector, which is 

assumed to have normal distribution. Covariance matrix of 

the input signal can be calculated via Eq. (2) and (·)H refers to 

the Hermitian of the matrix.

Fig. 1.  Structure of network oriented localization system with array 
antenna.

Table 1. Comparison of angle estimation methods.

Technique Advantages Drawbacks

Capon -	�High resolution
-	�Limited performance due to noise 

power of antenna

MUSIC
-	�Intermediate 

resolution

-	�Performance lower than that of 
ESPRIT algorithm

-	�Sensitive to incident signal gains 
and phase error

-	�Sensitive to synchronized multi-
path errors

ESPRIT

-	�High resolution
-	�Robust to non-

precision array 
antennas

-	�Much computation
-	�Limitation of antenna layout
-	�Require many snap shots

ML

-	��Optimized only 
in environments 
where white noise 
and preferred 
signals are applied

-	�Much computation
-	�Require many snap shots
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where S is a covariance matrix of the signal and σ2 is a noise 

covariance.
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Eq. (5) indicates that a subspace is divided into signal and noise and Eq. (6) refers to 
Eigen value that expresses the subspace of the signal and Eq. (7) refers to Eigen value that 
expresses a subspace of noise. Thus, the number of signals can be estimated as L  Eigen 
values from which Eigen values that satisfy Eq. (7) are subtracted. 
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An angle of arrival with respect to M signals is determined by searching the output 

power  ,MUSIC i iP    in Eq. (8), which is the objective function with regard to  ,i i  , and 
finding the AOA that makes the maximum power spectrum of each signal. Here, an elevation 
angle is searched from 0° to 90° and azimuth is searched from 0° to 360°. An interval of 
search is determined considering the performance goal and computational capability of the 
system. 
 
2.2 Localization algorithm 
 

Among the AOA measurement values, a relationship between azimuth and signal source 
locations can be given as Eq. (9). 
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Here, in  refers to a measurement noise of azimuth. Eq. (9) can be expanded to Eq. (10). 
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If it is approximated to sin i in n  and cos 1in  , Eq. (10) can be represented as Eq. (11) 

(Du & Lee 2004, Broumandan et al. 2008). 
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If it is approximated to sin i in n  and cos 1in  , Eq. (10) can be represented as Eq. (11) 

(Du & Lee 2004, Broumandan et al. 2008). 
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If it is approximated to sin i in n  and cos 1in  , Eq. (10) can be represented as Eq. (11) 
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If it is approximated to sin i in n  and cos 1in  , Eq. (10) can be represented as Eq. (11) 
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Here, in  refers to a measurement noise of azimuth. Eq. (9) can be expanded to Eq. (10). 
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If it is approximated to sin i in n  and cos 1in  , Eq. (10) can be represented as Eq. (11) 

(Du & Lee 2004, Broumandan et al. 2008). 
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Here, in  refers to a measurement noise of azimuth. Eq. (9) can be expanded to Eq. (10). 
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If it is approximated to sin i in n  and cos 1in  , Eq. (10) can be represented as Eq. (11) 

(Du & Lee 2004, Broumandan et al. 2008). 
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Here, in  refers to a measurement noise of azimuth. Eq. (9) can be expanded to Eq. (10). 
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If it is approximated to sin i in n  and cos 1in  , Eq. (10) can be represented as Eq. (11) 

(Du & Lee 2004, Broumandan et al. 2008). 
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et al. 2008).
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Thus, the measurement equation can be obtained as Eq. (12) and a horizontal location 

can be estimated using least square technique via Eq. (12). 
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Furthermore, a relationship of location between elevation angle and signal source can be 

given as Eq. (13). 
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Here, in  refers to a measurement noise of elevation angle. Eq. (13) can be expanded to 

Eq. (14). 
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Here, ni
ϕ refers to a measurement noise of elevation angle. 

Eq. (13) can be expanded to Eq. (14).
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It is approximated into sinni
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Eq. (5) indicates that a subspace is divided into signal and noise and Eq. (6) refers to 
Eigen value that expresses the subspace of the signal and Eq. (7) refers to Eigen value that 
expresses a subspace of noise. Thus, the number of signals can be estimated as L  Eigen 
values from which Eigen values that satisfy Eq. (7) are subtracted. 

 
2 , 1, ,i i M                                                          (6) 

2, 1, ,i i M L                                                         (7) 
 
As explained in the above, MUSIC makes use of orthogonal characteristics ( 0H

n V A ) 
of signal's directional vector A  and Eigen vector  1 2n M M Lv v v V  that corresponds to 
noise among the Eigen vectors of signals inputted into array antennas. Thus, the output power 

 ,MUSICP    in the MUSIC is calculated via Eq. (8). 
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An angle of arrival with respect to M signals is determined by searching the output 

power  ,MUSIC i iP    in Eq. (8), which is the objective function with regard to  ,i i  , and 
finding the AOA that makes the maximum power spectrum of each signal. Here, an elevation 
angle is searched from 0° to 90° and azimuth is searched from 0° to 360°. An interval of 
search is determined considering the performance goal and computational capability of the 
system. 
 
2.2 Localization algorithm 
 

Among the AOA measurement values, a relationship between azimuth and signal source 
locations can be given as Eq. (9). 
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Here, in  refers to a measurement noise of azimuth. Eq. (9) can be expanded to Eq. (10). 
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If it is approximated to sin i in n  and cos 1in  , Eq. (10) can be represented as Eq. (11) 
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Finally, a location can be estimated using a least square technique via the measurement 

equation arranged to Eq. (17). 
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As shown in Eq. (17), a three-dimensional location can be obtained by either estimating 

the vertical location after horizontal location is estimated or combining Eqs. (12, 17) at once. 
The TDOA technique has a non-linear type of measurement equation in contrast with 

the AOA technique. It is linearized using the Taylor's Series Expansion at an arbitrary 
location and estimates a location with an iterative form. Thus, AOA measurement equation 
should be changed to an iterative form as shown in Eqs. (18) and (19) to perform the 
composite positioning of TDOA and AOA. 
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where  0 0 0, ,x y z  is an initial location, which can be obtained using only the AOA technique 
or direct solution method based on the TDOA. The measurement matrix is shown in Eq. (20). 
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where N  is the number of sensors. 
 
3. DESIGN AND IMPLEMENTATION ISSUES 

 
3.1 Calibration of antenna mismatch  
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where  0 0 0, ,x y z  is an initial location, which can be obtained using only the AOA technique 
or direct solution method based on the TDOA. The measurement matrix is shown in Eq. (20). 
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where  0 0 0, ,x y z  is an initial location, which can be obtained using only the AOA technique 
or direct solution method based on the TDOA. The measurement matrix is shown in Eq. (20). 
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where  0 0 0, ,x y z  is an initial location, which can be obtained using only the AOA technique 
or direct solution method based on the TDOA. The measurement matrix is shown in Eq. (20). 
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where  0 0 0, ,x y z  is an initial location, which can be obtained using only the AOA technique 
or direct solution method based on the TDOA. The measurement matrix is shown in Eq. (20). 
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where (x0, y0, z0) is an initial location, which can be obtained 

using only the AOA technique or direct solution method 

based on the TDOA. The measurement matrix is shown in 

Eq. (20).
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3. DESIGN AND IMPLEMENTATION ISSUES

3.1 Calibration of Antenna Mismatch 

Since the number of elements and type in array antenna 

are directly related to performance objectives of a system, 

they should be considered during the system design. When 

the number of elements in array antenna is N with regard 

to narrow-band signals, AOA measurement values can be 

acquired up to N-1 signals (Chen et al. 2010). Comparing 

configurations of array antenna, performance of uniform 

circular array (UCA) is known to be better than that of 

uniform linear array (ULA) (Shen & Win 2010, Tan 2010).

In order to obtain accurate AOA measurement values, 

ideal array antennas are needed but errors are present 

due to mismatch of amplitude and phase and inaccuracy 

of mutual coupling and antenna element location (Tan 

2010). Thus, accurate AOA measurement values can be 

acquired when these errors are calibrated during the system 

implementation. There are several calibration methods. 

In general, transmitters are arranged at generally known 

positions and amplitude and phase responses of array 

antennas are measured and calibrated (Cherntanomwong 

et al. 2005, Tan 2010).

3.2 Calibration of Channel Mismatch

When an AOA is estimated using array antennas, phase 

response of the RF front-end of each antenna elements 

in array antenna should be synchronized. To achieve 
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this, a common clock is used during signal demodulation 

but phase delay occurred at filters may vary so it is not 

sufficient. Thus, as shown in Fig. 2, a method that measures 

a phase difference occurred at the output of each channel 

after known signals of the same phase thereby calibrating 

the difference has been widely used (National Instruments 

2016).

3.3 AOA Algorithm

Eigen values acquired using general MUSIC algorithms 

do not satisfy Eq. (7) but show the characteristics as shown 

in Eq. (21).
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Therefore, it is difficult to estimate the number ( M ) of input signals. To solve this problem, a 
number of statistical approaches have been proposed. Typically, Akaike Information theoretic 
Criteria (AIC) and Minimum Description Length criteria (MDL) proposed by Wax & Kailath 
(1985) and predicted Eigen-Threshold (ET) approach proposed by Chen et al. (1991) can be 
found. However, these methods have been known to show poor performance over the colored 
noise environment (Tan 2010). 

Even if the number of input signals can be known accurately, it is still difficult to 
perform location estimation of multiple signals. To estimate a location of transmitter, AOA 
measurement values at each sensor should be combined but it is not known that each 
measurement value is transmitted which transmitter. This problem was firstly recognized in 
1964 and now it is known as Data Association Problem (Sittler 1964) or Ghost Node Problem 
(Reed 2009). The solution to this problem is to use a brute force approach or line of bearing 
(LoB) intersection clustering-based approach. The brute force approach estimates the 
locations of all transmitters with respect to combination of AOA measurement values and the 
number of all cases and predicts the AOA again from the estimated locations thereby finding 
the final location of transmitter by searching the minimum location of residual between 
measured and predicted values. This method can be applicable when the number of 
transmitters and sensors is small because of much computation. The LoB intersection 
clustering based approach is based on K-means algorithm and it is a sub-optimal technique of 
the brute force approach. However, it has as advantage of less computation than brute force 
method (Makhoul et al. 1985, Proakis 2001). 

MUSIC algorithms have been improved to enhance resolution and reduce computation. 
Among the improved algorithms, root-MUSIC is an algorithm based on the square root of the 
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of AOA measurement values and the number of all cases 

and predicts the AOA again from the estimated locations 

thereby finding the final location of transmitter by searching 

the minimum location of residual between measured and 

predicted values. This method can be applicable when the 

number of transmitters and sensors is small because of 

much computation. The LoB intersection clustering based 

approach is based on K-means algorithm and it is a sub-

optimal technique of the brute force approach. However, 

it has as advantage of less computation than brute force 

method (Makhoul et al. 1985, Proakis 2001).

MUSIC algorithms have been improved to enhance 

resolution and reduce computation. Among the improved 

algorithms, root-MUSIC is an algorithm based on the 

square root of the polynomial, which provides high 

resolution but has a limitation that it can only be applied 

to linear array antennas (Rubsamen & Gershman 2008). 

gold-MUSIC employs an iterative method based on gold-

section univariate (GSU) minimization thereby obtaining 

accurate measured values with regard to a wide range of 

signal to noise ratio (SNR) (Rangarao & Venkatanarasimhan 

2013). Thus, appropriate algorithm should be selected 

according to application fields and processing procedure 

of each algorithm is summarized in Fig. 3. There are 

other algorithms such as one that is applied to multi-path 

Fig. 2.  Array test bench setup comprised of four antennas and NI USRP 
boards.
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environment such as indoor space or urban areas (Seow & 

Tan 2008, Gentile et al. 2013, Wielandt 2015) and filtering 

or smoothing method (Wielandt et al. 2014) should also be 

considered.

3.4 Arrangement of Each Sensors

Since the arrangement of sensors (array antennas) 

is closely related to system performance, a relationship 

between them should be identified first prior to arranging 

them. As shown in Fig. 4, when the i-th sensor and arbitrary 

transmitter are located at Si = [xsi ysi ]
T and p = [xp yp]T, 

covariance of location estimation error can be expressed as 

defined in Eq. (22) using the Cramer-Rao inequality.
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location tracking system depends on AOA measurement 

noise, the number of sensors, a distance between sensor and 

transmitter, and AOA. Here, unless a transmitter is present 

at a fixed location, the Fisher information matrix cannot 

be calculated so it is assumed that a transmitter is located 

within a given region. By this assumption, a system can be 

designed in order to satisfy statistical characteristics within 

the region. The AOA measurement noise can be predicted 

theoretically from statistical models (Astely & Ottersten 

1999, Pedersen et al. 2000, Spencer et al. 2000, Abdi et al. 

2002, Andersen & Pedersen 2002). Once the achievable AOA 

measurement noise is determined, the number of sensors 

and arrangement can be determined (Lim et al. 2012).

3.5 Alignment of Each Antennas (Measuring Orientation)

The AOA estimated in the algorithm is a relative AOA of 

signals with regard to the orientation where sensors (array 

antennas) are installed. Therefore, absolute AOA should be 

calculated to predict a location of transmitter from the AOA. 

That is, all sensors should be aligned in specific directions 

(e.g., true north) or orientation where each sensor is 

installed should be measured (Peng & Sichitiu 2006). That 

is, absolute AOAs θ1+Δθ and θ2+Δθ with regard to true 

north can be calculated by adding sensor's installation 

orientation Δθ when AOAs of received signals are θ1 and θ2 

at transmitters b1 and b2 as shown in Fig. 5a.

Even when the installation orientation of sensor is not 

known, AOA can be measured to estimate a location (Peng 

& Sichitiu 2006) but it can only be applicable to estimate 

a location of receivers when there are three or more 

transmitters at already-known locations as shown in Fig. 

5b. That is, it cannot be applied to estimate a location of 

transmitter when sensors are arranged in known locations.

4. CONCLUSIONS

This study summarized issues that can occur while 

designing and implementing systems that estimated 

locations of RF emitters using sensors with array antennas 

based on network-orientation including a solution to the 

issues. This study explained array antenna error and RF/

Fig. 4.  AOA measurement from a sensor.

Fig. 5.  Triangulation in AOA localization: (a) Localization with orientation 
information; (b) Localization without orientation information.
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IF channel error in terms of hardware and introduced a 

method to calibrate the error as a solution.  From the aspect 

of software, AIC, MDL, and ET techniques were introduced 

to explain the problem of typical MUSIC algorithm and 

solve the problem from the viewpoint of identification 

of the number of received signals and data association 

problem or ghost node problem that can occur during the 

determination of a number of emitters were introduced 

as well as their solution method. Finally, a relationship 

between sensor array and performance was presented 

mathematically to implement the system and the need of 

orientation alignment of array antennas of each sensor was 

summarized.
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