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1. INTRODUCTION

Distance Measuring Equipment (DME/Normal or DME/

N) is a pulse based ranging system. It consists of airborne 

and ground subsystems (Kayton & Fried 1997). The airborne 

subsystem is called an interrogator and the ground subsystem 

is a transponder. It determines a slant range between the 

interrogator and the transponder by measuring the two-

way flight time in exchanging DME/N pulses. The time of 

flight or the time of arrival (TOA) is measured with respect 

to the half amplitude point of the pulse. When a transmitted 

pulse is distorted, trait is likely that the half amplitude point 

of the transmitted pulse is shifted, therefore ranging errors 

may occur. The primary cause of a DME/N pulse distortion 

is multipath and the multipath induced range errors in DME 

can be over one hundred meters.

However, rigorous efforts have not been made to 

suppress DME/N multipath induced range errors. One 
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probable reason is that the required DME/N range 

accuracy for DME-based en-route and non-precision 

approach is satisfied without multipath rejection. Recently, 

Federal Aviation Administration (FAA) in United States 

has considered DME/N as one of the possible Alternative 

Position Navigation and Timing (APNT) systems for Global 

Navigation Satellite Systems (Lo et al. 2011, Kim 2012). The 

advantage of DME/N as an APNT system is the wide spread 

DME/N ground station network in U.S. Conterminous. 

Also, the DME avionics are currently installed in most 

large aircraft. However, its drawback is that the DME range 

accuracy is too poor to meet the required APNT position 

accuracy. To enable DME to have a better range accuracy, 

there have recently been two major improvements. Pelgrum 

et al. (2012) has developed a modified DME/N system 

that utilizes DME carrier as a ranging source. This system 

could replace the current DME design and be a long term 

DME solution for APNT. On the other hand, Kim (2013a) 

proposes alternative DME/N pulses that improves the 

ranging accuracy against noise and multipath.

Concerning the large DME ranging errors due to 

multipath, Lo et al. (2014) proposed possible DME/N 

multipath mitigation methods, which are the modification 
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of flight operations and procedures to avoid severe 

multipath from nearby environment, simple averaging of 

DME/N range measurements, and carrier smoothing & 

extended averaging. First, the change of flight operation 

or procedures seems to be expensive because it requires 

analysis of DME/N signal propagation in extremely large 

area. The simple averaging works fine in some cases, but (Lo 

et al. 2014) found that it worked poorly in a certain DME/N 

ground station to aircraft geometry. The carrier smoothing 

& extended averaging may be able to effectively suppress 

multipath if clock oscillators in DME/N perform very 

stable. However, most DME/Ns in operation were found 

to not have clock oscillators stable enough for the carrier 

smoothing.     

As a further effort for DME multipath mitigation, this 

paper proposes a supervised learning based multipath 

rejection method (Kim 2013b). The supervised learning is 

one of the popular machine learning algorithms, whose 

goal is to find a mapping function for given training data 

consisting of inputs and outputs (Chapelle et al. 2006). 

The supervised learning has been widely used in various 

applications including health science (Ghosh-Dastidar 

& Adeli 2009, Adeli & Ghosh-Dastidar 2010), speech 

recognition (Smaragdis 2007), network traffic classification 

(Erman et al. 2007), and image processing (Carneiro et al. 

2007) to name a few.

In this paper, the supervised learning is used to develop 

an estimator that predicts multipath induced TOA errors 

from the shape of a received DME pulse. The paper first 

discusses DME pulse shape and its multipath impact. 

Then, the DME multipath modeling and the training data 

generation for learning will be introduced. Next, estimators 

developed from using the training data and their multipath 

rejection performance will be discussed.

2. DME PULSE WAVEFORMS AND 
SUPERVISED LEARNING APPROACH

2.1 DME Pulse Waveform and Multipath Impacts

This section overviews the pulse shape characteristics 

of DME and its multipath impacts. The DME pulse shape 

requirements are listed in Table 1 (Kim 2013a) and a 

standard Gaussian DME pulse is shown in  Fig. 1. The 

standard or reference Gaussian DME pulse has a rise time 

of 2.5 μs, a width of 3.0 μs, and a fall time of 2.5 μs. In Fig. 1,  

the reference Gaussian pulse is denoted as a direct pulse 

and the distorted pulse shape due to multipath is also 

depicted. The TOA of a DME is determined with respect to 

the half amplitude point of the pulse. When the pulse shape 

is distorted due to multipath, the half amplitude point 

is shifted, therefore the TOA measurement error may be 

induced.

As an example, the shape of the standard Gaussian pulse 

in Fig. 1 is distorted due to multipath such that it has a rise 

time of 2.66 µs, a width of 3.97 µs, and a fall time of 2.86 µs. 

The half amplitude point of the distorted pulse is 0.19 µs 

behind the true half amplitude point of the direct pulse. As 

a result, a range error of 56 m is induced.

However, the distorted pulse shape in Fig. 1 is still valid 

with respect to the requirements in Table 1. In fact, this type 

of pulse shape can be transmitted from any DME equipment 

including airborne interrogators and ground transponders. 

In that case, an undesirable consequence is that it is hard to 

determine whether a received pulse keeps the transmitted 

pulse shape or it is significantly distorted due to multipath. 

As a result, no further signal processing technique can be 

performed unless the allowed pulse waveform variation 

in the specifications is tightened. The issue will be further 

discussed later in this paper.

2.2 Regression as a Supervised Learning for DME 

Multipath Suppression

Supervised learning is one of the machine learning 

Fig. 1.  Gaussian DME/N pulse shape (Kim 2013b).

Table 1.  Current DME/N ground transponder pulse shape requirements.

Pulse shape parameters Range
Rise time 2.5 (+0.5, -1.0) µs
Pulse top No instantaneous fall below a value

which is 95% of the maximum voltage
amplitude of the pulse 

Pulse duration 3.5 (±0.5) µs
Fall time 2.5 (±0.5) µs
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techniques that infer a mapping function between a 

set of input variables and output variables (Carneiro et 

al. 2007, Cord et al. 2009). Regression is one type of the 

supervised learning particularly when the output variable 

is continuous. When a discrete output is used, this type 

of supervised learning is called a classification. For the 

multipath suppression problem, a more adequate selection 

of the supervised learning methods is regression.

The goal of a regression or supervised learning is to infer 

a function h:X→Y from training set Dn composed of pairs of 

(input, output):

	 1 1(( , ),..., ( , )) ( )n
n n nD y y= ∈ ×x x X Y � (1)

xi belongs to some input set X⊂Rk and yi to output set Y⊂R. 

n is the number of pairs of input and output. The training 

data are independently and identically generated from a 

joint probability distribution function P(x, y). The function 

h(X) is to find the dependencies between X and Y in P(x, y) 

thorough a given regression model (Cord et al. 2009). Eq. (1) 

can be used for the DME multipath suppression problem as 

follows. First, the samples of a received DME pulse envelope 

consist of the input set X. The input set includes both of the 

reference Gaussian and distorted pulses due to noise and 

multipath. The output set Y consists of the induced TOA (or 

range) errors corresponding to each pulse in the input set 

X. The modeling of a DME multipath and the preparation 

of training data are discussed in the following subsection. 

A received DME signal, x, in an interrogator or transponder 

can be modeled as follows

	 ( ) ( ) ( ) ( )t t t t= + +x g m ε � (2)

where t is the sample time of a detected DME pulse. g is 

a transmitted DME pulse. m is a total multipath and ε is 

additive white noise. m can be further described as

	
1

( ) cos( ) ( )
N

i i i
i

m t g tα φ δ
=

= −∑ � (3)

where α is the peak amplitude ratio of the multipath to 

the direct. ϕ is a relative phase difference between the 

multipath to the direct. δ is the time delay of the multipath. 

If N is bigger than 1, the resultant multipath will be the sum 

of N different multipath. i is a index of a multipath. It can be 

to assumed that α, ϕ, and δ have some finite values. In most 

cases, α is in the range of (0,1]. Note that ( ) indicates an 

open interval that excludes the endpoints and [ ] indicates a 

closed interval that includes the endpoints. The range of ϕ 

is [0, π] and the range of δ is (0, 6 µs] because the multipath 

arriving 6 µs behind the direct pulse hardly impacts the 

timing errors. Based on the range of the parameter values 

and an arbitrary number of N, it is possible to generate a 

large number of x that consists of the feature set X.

When a modeled DME pulse, x, is generated, its peak 

amplitude may vary. If a multipath is constructive, the 

peak amplitude of a distorted pulse is bigger than that of 

the reference Gaussian pulse. Likewise, some distorted 

pulse may have a lower peak amplitude if a multipath 

is destructive. To have effective training data set, each 

x  is normalized to one because the pulse should be 

distinguished by its shape. In addition, x is re-sampled 

with respect to the determined half amplitude point of x by 

a sampling time of ΔTS. The normalized and re-sampled 

x is denoted as xrs. The re-sampling process provides a 

consistent time slot for the sample points of xrs, which 

helps to better characterize the shape difference among the 

distorted pulses.

The output set Y consists of TOA errors corresponding to 

each  in the feature set X. Using the multipath parameters 

in Table 2, various training data set of X and Y can be 

generated as follows
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where k is the number of sampling points.

It should be also noted that the feature set X must include 

some noise that may present in operational environment. 

It is presumed that the parameter ranges in Table 2 

are adequate to represent multipath and noise in most 

operational conditions. In Table 2, N is set to 2 because 

the amplitudes of the first and the second multipath are 

dominant compared to the rest of the following multipath 

in general. Fig. 2 shows an example of feature training data 

of X and Y from using the reference Gaussian pulse and 

Table 2.  Parameter ranges for training data.

Parameter Ranges
N
α1

ϕ1

ϕ2

δ1

δ2

ε
n

Sampling
frequency

2
0 to 1 in steps of 0.1 
Random, uniform distribution [0, 0.2]
0 to π
Random, uniform distribution [0, π]
0 to 6 µs
Random, uniform distribution [δ1+0.08 µs, δ1+2 µs]
SNR of 25 dB
130
25 MHz
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the multipath parameters in Table 2. Each pulse shown in 

Fig. 2a represents the sum of the direct and multipath. The 

increasing trend of the TOA errors in Fig. 2b is because the 

larger peak amplitude ratio is used as the sample index 

increases. Note that Fig. 2a and b show the typical value of  

X and Y.

Two linear regression approaches are introduced to find 

a TOA error predictor using the above training data set in 

the next section.

2.3 Two Linear Regressions: Least Squares and 

Regularized Least Squares

To develop a TOA error predictor that helps to suppress 

multipath impacts, this paper explores the performance 

of the two linear regression approaches: least squares and 

regularized least squares. The predictor v for each approach 

is derived in this section.

Assuming that there is a linear estimator, v, that maps X 

to Y, v can be obtained from using the Least Squares (LS) 

regression technique as follows

	 2
2minimize −Xv Y � (5)

where 2⋅  is Euclidean norm. The solution of Eq. (5) is given 

by the pseudo-inverse of the matrix X

	 ( ) 1† T T
ls

−
= =v X Y X X X Y � (6)

which is a normal equation. Eq. (6) assumes that the number 

of training data is bigger than the number of the pulse 

samples.

Now, vls can be used to estimate a multipath induced TOA 

error, ŷ, as follows

	 ˆls new lsy = x v � (7)

where xnew is the sampled points of an arrived DME pulse. 

When the transmitted DME pulse of xnew is identical to the 

reference DME pulse used in the training data, vls would 

be the best estimator providing the minimum residual 

sum of squares of TOA errors. However, if the transmitted 

pulse deviates from the reference DME pulse, the estimator 

wouldn’t result in the expected optimal performance.

In order to derive an estimator that also performs well 

with some uncertainty in the transmitted pulse shapes, 

Regularized Least Squares (RLS) is preferred to LS.  In the 

RLS formulation, the possible variation in the transmitted 

pulse can be modeled as uncertainty to the matrix X such 

that

	 A = X + U� (8)

where U is a random matrix with a zero mean (Boyd & 

Vandenberghe 2004). In other words, the matrix A has 

an average value of X with a certain variance. Then, the 

problem of the TOA error estimator is formulated as 

	 2
2minimize E −Av Y � (9)

where E stands for expectation. The solution of Eq. (9), vrls, is 

given by

	 ( ) 1T T
rls

−
= +v X X P X Y � (10)

Fig. 2.  (a) Training data set of X from using the parameter ranges in Table 2. Each training data represents the sum of direct and multipath pulses. (b) 
Time of Arrival (TOA) errors corresponds to the training data set of X.

(a) (b)
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where P = EUTU.

The RLS enforces most vector elements of vrls to be 

smaller than those of vls. For this reason, the vrls may not 

be as effective as v ls when the reference DME pulse is 

transmitted. However, the TOA error estimates using vrls 

would not be sensitive to unexpected DME pulse shapes. 

Fig. 3 shows one example of the elements of vls and vrls when 

P = 10·I where I is the identity matrix. Note that the values of 

the vector elements are very small because the value of ŷ is 

the estimated time of arrival in seconds.

3. ASSESSMENT OF MULTIPATH 
REJECTION PERFORMANCE

T h i s  s e c t i o n  p r e s e n t s  t h e  m u l t i p a t h  r e j e c t i o n 

performance of the proposed method for the following two 

cases: training data with the reference Gaussian pulse only 

and training data with the reference Gaussian and non-

reference Gaussian pulses. The two cases will show the 

trade-off between the multipath rejection effectiveness and 

the allowed waveform variation.

3.1 DME Multipath Rejection Process

The supervised learning is performed offline using either 

simulation or an actual system. Then, the estimator, vls or 

vrls, would be stored in a local memory of a DME system. The 

use of either vls or vrls will depend on how much the pulse 

waveform variation can be tightened.

When a DME pulse is received, the procedures shown 

in Fig. 4 will be executed. The procedure doesn’t require 

heavy computation l ike other multipath rejection 

techniques based on iterative searches such as Expectation 

Maximization (Chan et al. 2005). Upon receiving a DME 

pulse from an airborne interrogator, a DME ground 

transponder is given less than 50 µs to perform any 

computation before sending a reply to the interrogator.  

Therefore, the simple and fast process in Fig. 4 is an 

important advantage.

3.2 Simulation Approach: Pulse Waveform Variation and 

Multipath Generation

The multipath rejection performance of the proposed 

method would vary depending on the deviation of the 

transmitted pulse shape from the waveform used in 

the training data. Therefore, the multipath rejection 

performance is evaluated against possible variation in the 

transmitted pulse waveform. For this reason, the multipath 

performance evaluation is tested under two different cases. 

The first case only uses the Gaussian reference pulse in the 

training data. In addition to the reference Gaussian pulse, 

the second case also includes Gaussian pulses having 

slightly different standard deviations in the training data. 

The two cases will result in different multipath TOA error 
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Fig. 3.  Comparison of the vector elements of vls and vrls.

Fig. 4.  Multipath rejection process (Kim 2013b).
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estimators.

The TOA prediction performance is assessed against 

multipath generated using the same parameters values 

in Table 1 except that the peak amplitude ratio of the first 

multipath to the direct, α1, is limited to 0.5. The reason for 

this is that α1 is expected be less than 0.5 in most cases (Kelly 

& Cusick 1986). However, the estimator was derived by 

using training data having α1 up to 1.0 such that some rare 

multipath having equal or even slightly higher power than 

the direct would be effectively suppressed as well. Additive 

white noise under SNR of 30 dB is also injected during 

the tests. Note that the multipath generated for the test is 

not the same one used in the training data because of the 

randomness in the second multipath and additive noise.

Case 1: Learning with Training Data Basis on the Reference 

Gaussian Pulse

In the first case, the training data uses only the reference 

Gaussian pulse and corresponding multipath. For the 

performance evaluation of the LS and RLS estimators, a 

total of eleven Gaussian pulses are used for the transmitted 

pulses. The eleven Gaussian pulses include the reference 

Gaussian pulse and the rest of the ten Gaussian pulses have 

the rise times varying at ± 100 ns from that of the reference 

Gaussian pulse. Note that the rise time of a pulse is used as 

a metric for the waveform variation because it is the most 

influential parameter to the accuracy of TOA or the half 

amplitude point estimation in general.

Fig. 5 shows Root Mean Square (RMS) of the raw and 

compensated TOA errors from using the LS and RLS for 

the 11 Gaussian pulses. In the figure, the uncompensated 

TOA errors range from 19.94 to 22.87 meters and tend 

to slowly escalate as the rise time increases. The TOA 

errors compensated from the LS based predictor have 

the minimum RMS of 12.21 m when there is no waveform 

variation from the reference Gaussian pulse. However, the 

TOA errors of the LS based predictor quickly diverge as the 

rise time varies. On the other hand, the RLS based predictor 

with P = 10·I provides slightly lesser multipath mitigation 

of 14.24 m at zero variation. The multipath mitigation of 

the RLS based predictor also degrades as the rise times of 

the transmitted pulses diverge. However, the rate of the 

degradation of the compensated TOA errors is slower than 

the LS-based predictor.

The main cause of the degradation in both cases is a 

bias in the TOA measurement caused by the different 

half amplitude point between the transmitted pulse 

and the pulse used in the training. Table 3 lists the RMS 

improvement of the compensated TOA errors from the raw 

range errors in percent. In the table, the ‘X’ denotes the 

cases when the RMS of the compensated range errors from 

using the LS or RLS is larger than the raw range errors. In 

other words, the rise time variation corresponding to ‘X’ 

should not be allowed when applying the particular LS or 

RLS based predictors.

Case 2: Learning with Training Data Including non-reference 

Gaussian Pulse

In the second case, the training data uses the reference 

and two non-reference Gaussian pulses. One non-reference 

Gaussian pulse has a slower rise time of 2.75 µs, and the 

other has a faster rise time of 2.48 µs. The two pairs of 

the non-reference Gaussian pulses are selected because 

they can still provide considerable multipath mitigation 

with large rise time variations. The transmitted pulses for 

the purpose of the performance test are based on a total 

of eleven Gaussian pulses. The  eleven Gaussian pulses 

include the reference pulse and the rise times of the 

remaining ten Gaussian pulses vary at ±250 ns from that of 
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Fig. 5.  RMS of multipath range errors of the raw, LS, and RLS with P=10∙I.

Table 3.  RMS improvement of multipath induced range errors in case 1.
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the reference Gaussian pulse.

With the second learning approach, Fig. 6 shows the RMS 

of the TOA errors of the LS based predictor with respect to 

the rise time variation. The RLS is not used in the second 

case because the performance of the RLS and the LS is 

almost identical in this case. Unlike the case 1, the LS could 

cover larger rise time variation from -250 to 200 ns but the 

effectiveness of the multipath mitigation has been reduced. 

The improvement of the LS based predictor over the raw 

TOA errors is listed in Table 4.

From the results in the case 1 and case 2, Table 5 

summarizes the multipath rejection performance of the 

proposed method given the range of the allowed rise time 

variation. The chosen predictor is the one that results in 

the minimum RMS within the given range of variation. The 

results clearly show that the proposed method performs 

better when the rise time variation is minimal. This is 

a reasonable result because the similarity between the 

training data and the transmitted signal must be ensured 

for the validity of the derived estimator from the supervised 

learning. This results also indicate how much the allowed 

rise time variation in the current specification needs to be 

tightened to utilize the proposed method to better suppress 

DME multipath.

4. CONCLUSIONS

This paper presented an innovative multipath rejection 

method of a DME pulse based on the supervised learning. 

The regression theory of the LS and RLS and the preparation 

of training data were discussed. The performance of the 

proposed method was tested in simulation with multipath 

and noise independently generated from the training data. 

The results suggest that DME multipath could be effectively 

suppressed using the proposed method. The performance of 

the proposed method varies with respect to the pulse shape 

differences used in the training data and DME operation. 

When the reference Gaussian pulse was used in the training 

data and a DME transmitter, the TOA improvement was 

as high as 45% from the tests. However, as the pulse shape 

used in transmission deviates from the training data, the 

improvement of TOA measurement become less effective. 

With the largest variation of 200 ns, the TOA improvement 

was 16%.

The results suggest that the DME pulse shape variation 

should be tightened to mitigate multipath and increase 

DME range accuracy. Ideally, one particular pulse shape 

is preferred to be used in both of the transponders and 

interrogators to maximize the multipath mitigation with 

the proposed method. Through a software upgrade, 

ground DME transponders are expected to be able to 

steadily transmit one particular pulse shape such that 

unintended pulse waveform variation is lower than noise. 

Also, the current state-of-the-art avionics should be able to 

steadily transmit one pulse shape with a software upgrade. 

However, it may be difficult or impossible to enforce old 

legacy DME avionics to use one particular pulse shape. For 

the near term operation, the ground DME transponders 

would transmit one pulse shape and the DME avionics with 

updated software would apply the developed estimator to 

suppress multipath. In this case, multipath mitigation from 
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Fig. 6.  RMS of multipath range errors of the raw and LS with non-reference 
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Table 4.  RMS Improvement of multipath induced range errors in case 2.

Rise time
variation (ns)

LS
(%)

-250
-200
-150
-100
-50
0

50
100
150
200
250
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11
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15
18
22
24
22
16
6
X

Table 5.  Multipath rejection performance given the range of rise time 
variation.

Rise time
variation (ns)

Selected
predictor

Mean
RMS (m)

RMS improvement
over raw range errors (%)

±0
±20
±40

±100
±150
±200

LS in case 1
LS in case 1

RLS in case 1
LS in case 2
LS in case 2
LS in case 2

11.97
13.40
15.44
17.06
17.35
17.77

45
38
28
20
19
16
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ground to air only can be provided.

ACKNOWLEDGMENTS

This work was supported by the research grant of 

Cheongju University in 2015 - 2016.

REFERENCES

Adeli, H. & Ghosh-Dastidar, S. 2010, Automated EEG-based 

diagnosis of neurological disorders: Inventing the 

future of neurology (Boca Raton, FL: CRC Press).

Boyd, S. & Vandenberghe, L. 2004, Convex optimization 

(Cambridge, NY: Cambridge University press).

Carneiro, G., Chan, A. B., Moreno, P. J., &Vasconcelos, N. 

2007, Supervised learning of semantic classes for image 

annotation and retrieval, IEEE transactions on pattern 

analysis and machine intelligence, 29, 394-410. http://

dx.doi.org/10.1109/TPAMI.2007.61

Chan, F., Choi, J., & Jee, G.-I. 2005, Time Estimation of 

Superimposed Coherent Multipath Signals Using the 

EM Algorithm for Global Positioning System, Journal of 

Global Positioning System, 4, 56-64.

Chapelle, O., Schölkopf, B., & Zien, A. 2006, Semi-supervised 

Learning (Cambridge, MA: MIT Press).

Cord, M., Cunningham, P. & Joshi, D. 2009, Machine Learning 

Techniques for Multimedia: Case Studies on Organization 

and Retrieval, Journal of Electronic Imaging, 18, 039901-

01-2. http://dx.doi.org/10.1117/1.3207770

Erman, J., Mahanti, A., Arlitt, M., Cohen, I., & Williamson, C. 

2007, Semi-supervised network traffic classification, In 

ACM SIGMETRICS Performance Evaluation Review, 35, 

369-70. http://dx.doi.org/10.1145/1254882.1254934

Ghosh-Dastidar, S. & Adeli, H. 2009, A new supervised 

learning algorithm for multiple spiking neural networks 

with application in epilepsy and seizure detection, Neural 

Networks, 22, 1419-1431. http://dx.doi.org/10.1016/

j.neunet.2009.04.003

Kayton, M. & Fried, W. R. 1997, Avionics navigation systems, 

2nd ed. (New York: John Wiley & Sons).

Kelly, R. J. & Cusick, D. R. 1986, Distance measuring 

equipment and its evolving role in aviation, Advances 

in electronics and electron physics, 68, 1-243. http://

dx.doi.org/10.1016/S0065-2539(08)60854-9

Kim, E. 2012, Investigation of APNT optimized DME/DME 

network using current state-of-the-art DMEs: Ground 

station network, accuracy, and capacity, In Position 

Location and Navigation Symposium (PLANS), 2012 

IEEE/ION, 146-57. IEEE. http://dx.doi.org/10.1109/

PLANS.2012.6236876

Kim, E. 2013a, Alternative DME/N pulse shape for APNT, 

In 2013 IEEE/AIAA 32nd Digital Avionics Systems 

Conference (DASC), 4D2-1-4D2-10, IEEE. http://dx.doi.

org/10.1109/DASC.2013.6712591

Kim, E. 2013b, Enhancing DME/N multipath rejection 

with tightened pulse waveform variation, In 2013 

IEEE/AIAA 32nd Digital Avionics Systems Conference 

(DASC), 4D1-1-4D1-9, IEEE. http://dx.doi.org/10.1109/

DASC.2013.6712590

Lo, S., Chen, Y. H., Segal, B., Peterson, B., Enge, P., et al. 2014, 

Containing a Difficult Target: Techniques for Mitigating 

DME Multipath to Alternative Position Navigation and 

Timing (APNT), In Proceedings of the International 

Technical Meeting of The Institute of Navigation, San 

Diego, CA, pp.413-423.

Lo, S., Peterson, B., Akos, D., Narins, M., Loh, R., et al. 2011, 

Alternative Position Navigation & Timing (APNT) 

Based on Existing DME and UAT Ground Signals, 

In Proceedings of the Institute of Navigation GNSS 

Conference, Portland, OR.

Pelgrum, W., Li, K., Smearcheck, M., & van Graas, F. 2012, 

eDME architecture development and flight-test 

evaluation, In 2012 IEEE/AIAA 31st Digital Avionics 

Systems Conference (DASC), 1-37, IEEE. http://dx.doi.

org/10.1109/DASC.2012.6383037

Smaragdis, P. 2007, Convolutive speech bases and their 

application to supervised speech separation, IEEE 

Transactions on Audio, Speech, and Language Processing, 

15, 1-12. http://dx.doi.org/10.1109/TASL.2006.876726

Euiho Kim is an assistant professor in the 

department of Aeronautical and Mechanical 

Engineer ing in Cheong ju University, 

Chungbuk, Republic of Korea. His current 

research areas are satellite based navigation, 

aircraft navigation using ground nav-aids, 

indoor navigation, and robotics. Previously, 

Dr. Kim was with the Department of Aerospace Engineering at 

the University of Kansas as a research associate. He was the 

technical lead of the Ground-Based Augmentation System 

(GBAS) of GPS and FAA's Alternative Position, Navigation, and 

Timing (APNT) programs when he worked in industry. Dr. Kim 

completed his Ph.D. and master’s degree in the department of 

Aeronautics and Astronautics at Stanford University. He 

finished his undergraduate degree in the department of 

Aerospace engineering at Iowa State University.


