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1. INTRODUCTION

A payload in a cube satellite is generally dependent on the 

mission purpose. Seoul National University GNSS Laboratory 

satellITE (SNUGLITE) has the following payloads: dual-

frequency(L1/L2) GPS receivers, boom structure and fine 

magnetometer to observe the Earth magnetic field (Kim et al. 

2016). As reference sensors for the Attitude Determination 

and Control System (ADCS), sun sensors and magnetometer 

are used, while as a rate sensor, gyroscopes are mainly 

used (Ni & Zhang 2011). Coarse sun sensors have accuracy 

within 5-10° in general, whereas expensive fine sun sensors 

have a better accuracy within 0.01°. SNUGLITE uses an 

inexpensive photodiode-type coarse sun sensor as a sensor 

for attitude determination sensor, and also employs three-

axis magnetometer and three-axis gyroscope for attitude 
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A 2U cube satellite called SNUGLITE has been developed by GNSS Research Laboratory in Seoul National University. Its main 

mission is to perform actual operation by mounting dual-frequency global positioning system (GPS) receivers. Its scientific 

mission aims to observe space environments and collect data. It is essential for a cube satellite to control an Earth-oriented 

attitude for reliable and successful data transmission and reception. To this end, an attitude estimation and control algorithm, 

Attitude Determination and Control System (ADCS), has been implemented in the on-board computer (OBC) processor in 

real time. In this paper, the Extended Kalman Filter (EKF) was employed as the attitude estimation algorithm. For the attitude 

control technique, the Linear Quadratic Gaussian (LQG) was utilized. The algorithm was verified through the processor in the 

loop simulation (PILS) procedure. To validate the ADCS algorithm in the ground, the experimental verification via a single axis 
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HILS verification (Schwartz et al. 2003) with complex air-bearing mechanism design and high cost.
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determination sensor (Jang et al. 2016).

Estimation algorithms using attitude determination 

sensors can be typically divided into statistical estimation 

methods using quaternion such as QUEST (Ran et al. ‎2014), 

REQUEST, extended Kalman filter (EKF), and deterministic 

estimation methods including TRIAD algorithm. The TRIAD 

algorithm is used as the estimation algorithm during the 

initial stage, and then EKF is used to estimate the attitude of 

satellite. For the reference coordinate, a magnetic field model 

of the International Geomagnetic Reference Field (IGRF)-12 

provided by the International Association of Geomagnetism 

and Aeronomy (IAGA), and DE405 solar model in the NASA 

Jet Propulsion Laboratory (JPL) were used.

In addition, a magnetorquer using magnet moment and 

reaction wheel or control moment gyro (CMG) are used as 

an actuator for control. Since the reaction wheel or CMG 

employs a motor, they consume more power than the 

magnetorquer. Furthermore, since an additional actuator is 

needed for moment dumping, three-axis magnetorquer was 

used in this study due to the low consumption, lightweight, 

and good control reliability. For the control algorithm, the 
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Linear Quadratic Gaussian (LQG) was used to generate a 

control gain in real time.

To develop a cube satellite, generally, the following steps 

are needed: first, an algorithm is designed through Software 

in the Loop Simulation (SILS) that verifies the algorithm 

in terms of software simulation. Next, the algorithm is 

implemented directly in the processor on-board computer 

(OBC) to verify the ADCS algorithm of the actual flight model 

(FM) through the Processor in the Loop Simulation (PILS) 

in real time. Finally, the ADCS algorithm is experimentally 

verified by simulating the space environment to validate the 

attitude estimation and control performance as well as the 

algorithm through the Hardware in the Loop Simulation 

(HILS). In the HILS verification, attitude estimation and 

control performance are verified through experimental 

procedure using air-bearing-based HILS simulator that is 

mechanically complex and has high design cost for three-

axis attitude determination and control (Schwartz et al. 

2003). Through this process, the ADCS algorithm in the cube 

satellite is finally designed and verified.

 In this paper, PILS that is implemented in actual OBC 

is discussed; and lower cost and more practical single-axis 

HIL experimental verification, in contrast with the HILS 

verification process using air-bearing, was presented (Ure 

et al. 2011). In particular, actual payload sensors should 

be used. Thus, a study on the sensors error modeling and 

compensation is also conducted.

2. ADCS ALGORITHM

2.1 Coordinate Frames

In this study, a number of coordinate systems are used. 

The Earth-centered inertial (ECI) coordinate system is a 

coordinate system that represents a position of one point 

in the space based on the origin in the center coordinate 

system of the Earth mass. In the ECI coordinate system, the 

Earth's equatorial plane is set to X and Y axes. The X-axis 

refers to the Vernal equinox; the Z-axis a vertical line in the 

North Pole direction in the XY plane; and the Y-axis an axis 

that is perpendicular to the X and Y axes. Next, the Earth-

centered Earth Fixed (ECEF) coordinate system is used, in 

which the X-axis of the ECI frame is fixed in the Greenwich 

meridian direction and thereby is rotated around the Earth's 

rotation axis. This can be seen in Fig. 1, in which the Z-axis is 

defined as the Earth's center direction from the mass center 

of the satellite, and the Y-axis is defined as an outer product 

between Z-axis and velocity direction of the satellite. The 

X-axis refers to an outer product between the Y and X axes. 

In addition, the body frame that represents an attitude of 

the satellite is defined by the Euler angle as shown in Fig. 2. 

As described in the Introduction, the solar position model 

(JPL DE405) calculates a solar position through the ECI 

coordinate, and the Earth's magnetic field model (IGRF-

12) is a model for the Earth's magnetic field. Thus, the ECEF 

coordinate system belongs to this (Kim 2015).

2.2 Attitude Determination Based on EKF

For the EKF to estimate the attitude state of the cube 

satellite, a linear Kalman filter, which linearized a non-linear 

system at the nominal point, was used (Jang 2016). Eq. (1) 

expresses the attitude information of the satellite. x̂(t) refers 

to quaternions, ω̂(t) an angular rate, and b̂(t) a gyro bias. The 

superscript of each variable expresses an estimate.
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The kinematics equation of quaternion can be notated as it is divided into quaternion 

ˆ ( )tq  and angular velocity ˆ ( )tω  as presented in Eq. (2). 
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The non-linear equation of the state variable is presented in Eq. (3), which is specified in 

detail in Eq. (4). 
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In Eq. (4), ( )tu  refers to the control input, 
B
measB  refers to the measurement of magnetic 

field in the body frame, and ( )tw  represents the Gaussian-distributed white noise. In addition, 
the space model with external disturbance considered gravity gradient torque and torque 
generated due to air friction and solar radiation wind as the covariance matrix (Q) as 
presented in Eq. (5). 
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Fig. 1.  ECI, ECEF, local, body frame in space.



Minkyu Choi et al.   Single-axis HIL Experiment Verification of ADCS for CubeSat 197

http://www.ipnt.or.kr

The kinematics equation of quaternion can be notated as 

it is divided into quaternion q̂(t) and angular velocity ω̂(t) as 

presented in Eq. (2).

	

2.2 Attitude Determination Based on EKF 
 

For the EKF to estimate the attitude state of the cube satellite, a linear Kalman filter, 
which linearized a non-linear system at the nominal point, was used (Jang 2016). Eq. (1) 
expresses the attitude information of the satellite. ˆ( )tx  refers to quaternions, ˆ ( )tω  an angular 

rate, and 
ˆ ( )tb  a gyro bias. The superscript of each variable expresses an estimate. 

 

 

 
 
 

0 1 2 3

1 2 3

1 2 310 1

ˆ        ˆ ( )
ˆ ˆˆ( ) ( ) ,    
ˆ ˆ( )

T

T

T

q q q qt
t t

t b b b

  



 
 

  
   

qq
x ω ω

b b   (1) 
 
The kinematics equation of quaternion can be notated as it is divided into quaternion 

ˆ ( )tq  and angular velocity ˆ ( )tω  as presented in Eq. (2). 
 

 

1 1ˆ ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( )
2 2

t t t t t q Ω ω q Ξ q ω
  (2) 

 
1 2 3

1 3 2

2 3 1

3 2 1 4 4

0
0

( )
0

0

  
  
  
  



   
  
 
  

Ω ω  

1 2 3

0 3 2

3 0 1

2 1 0 4 3

q q q
q q q
q q q
q q q



   
  
 
  

Ξ q

 
 
The non-linear equation of the state variable is presented in Eq. (3), which is specified in 

detail in Eq. (4). 

             ˆ ˆ , ,   ~ 0,t t t t t N x f x u w w Q
  (3) 

 

   

 

 1

1 ˆ ˆ( ) ( )ˆ ( ) 2
ˆ ˆ ˆˆ ( ), ( ) ( ) ( ) ( ) ( ) ( ( )) ( )

( )ˆ 1( ) ˆ ( )

B
LB

B
k meas D

bias

t t
t

f t t t t t t t t t
tt t





 
                              

Ω ω q
q 0

x u w ω w I u B ω Iω η
ηb b

  (4) 

In Eq. (4), ( )tu  refers to the control input, 
B
measB  refers to the measurement of magnetic 

field in the body frame, and ( )tw  represents the Gaussian-distributed white noise. In addition, 
the space model with external disturbance considered gravity gradient torque and torque 
generated due to air friction and solar radiation wind as the covariance matrix (Q) as 
presented in Eq. (5). 
  

 

   
 

     
 

4 4 4 3 4 3

2 2 2
3 4 3 3 3 3

2
3 4 3 3 3 3

,  ~ 0, ,        k D k GGT SRP AD

bias k
RRW

t t t N
t

  



  

  

  

                   

0 0 00
w η w Q Q 0 I 0

η 0 0 I
 (5) 

	

2.2 Attitude Determination Based on EKF 
 

For the EKF to estimate the attitude state of the cube satellite, a linear Kalman filter, 
which linearized a non-linear system at the nominal point, was used (Jang 2016). Eq. (1) 
expresses the attitude information of the satellite. ˆ( )tx  refers to quaternions, ˆ ( )tω  an angular 

rate, and 
ˆ ( )tb  a gyro bias. The superscript of each variable expresses an estimate. 

 

 

 
 
 

0 1 2 3

1 2 3

1 2 310 1

ˆ        ˆ ( )
ˆ ˆˆ( ) ( ) ,    
ˆ ˆ( )

T

T

T

q q q qt
t t

t b b b

  



 
 

  
   

qq
x ω ω

b b   (1) 
 
The kinematics equation of quaternion can be notated as it is divided into quaternion 

ˆ ( )tq  and angular velocity ˆ ( )tω  as presented in Eq. (2). 
 

 

1 1ˆ ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( )
2 2

t t t t t q Ω ω q Ξ q ω
  (2) 

 
1 2 3

1 3 2

2 3 1

3 2 1 4 4

0
0

( )
0

0

  
  
  
  



   
  
 
  

Ω ω  

1 2 3

0 3 2

3 0 1

2 1 0 4 3

q q q
q q q
q q q
q q q



   
  
 
  

Ξ q

 
 
The non-linear equation of the state variable is presented in Eq. (3), which is specified in 

detail in Eq. (4). 

             ˆ ˆ , ,   ~ 0,t t t t t N x f x u w w Q
  (3) 

 

   

 

 1

1 ˆ ˆ( ) ( )ˆ ( ) 2
ˆ ˆ ˆˆ ( ), ( ) ( ) ( ) ( ) ( ) ( ( )) ( )

( )ˆ 1( ) ˆ ( )

B
LB

B
k meas D

bias

t t
t

f t t t t t t t t t
tt t





 
                              

Ω ω q
q 0

x u w ω w I u B ω Iω η
ηb b

  (4) 

In Eq. (4), ( )tu  refers to the control input, 
B
measB  refers to the measurement of magnetic 

field in the body frame, and ( )tw  represents the Gaussian-distributed white noise. In addition, 
the space model with external disturbance considered gravity gradient torque and torque 
generated due to air friction and solar radiation wind as the covariance matrix (Q) as 
presented in Eq. (5). 
  

 

   
 

     
 

4 4 4 3 4 3

2 2 2
3 4 3 3 3 3

2
3 4 3 3 3 3

,  ~ 0, ,        k D k GGT SRP AD

bias k
RRW

t t t N
t

  



  

  

  

                   

0 0 00
w η w Q Q 0 I 0

η 0 0 I
 (5) 

�(2)

  

The non-linear equation of the state variable is presented 

in Eq. (3), which is specified in detail in Eq. (4).

	

2.2 Attitude Determination Based on EKF 
 

For the EKF to estimate the attitude state of the cube satellite, a linear Kalman filter, 
which linearized a non-linear system at the nominal point, was used (Jang 2016). Eq. (1) 
expresses the attitude information of the satellite. ˆ( )tx  refers to quaternions, ˆ ( )tω  an angular 

rate, and 
ˆ ( )tb  a gyro bias. The superscript of each variable expresses an estimate. 

 

 

 
 
 

0 1 2 3

1 2 3

1 2 310 1

ˆ        ˆ ( )
ˆ ˆˆ( ) ( ) ,    
ˆ ˆ( )

T

T

T

q q q qt
t t

t b b b

  



 
 

  
   

qq
x ω ω

b b   (1) 
 
The kinematics equation of quaternion can be notated as it is divided into quaternion 

ˆ ( )tq  and angular velocity ˆ ( )tω  as presented in Eq. (2). 
 

 

1 1ˆ ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( )
2 2

t t t t t q Ω ω q Ξ q ω
  (2) 

 
1 2 3

1 3 2

2 3 1

3 2 1 4 4

0
0

( )
0

0

  
  
  
  



   
  
 
  

Ω ω  

1 2 3

0 3 2

3 0 1

2 1 0 4 3

q q q
q q q
q q q
q q q



   
  
 
  

Ξ q

 
 
The non-linear equation of the state variable is presented in Eq. (3), which is specified in 

detail in Eq. (4). 

             ˆ ˆ , ,   ~ 0,t t t t t N x f x u w w Q
  (3) 

 

   

 

 1

1 ˆ ˆ( ) ( )ˆ ( ) 2
ˆ ˆ ˆˆ ( ), ( ) ( ) ( ) ( ) ( ) ( ( )) ( )

( )ˆ 1( ) ˆ ( )

B
LB

B
k meas D

bias

t t
t

f t t t t t t t t t
tt t





 
                              

Ω ω q
q 0

x u w ω w I u B ω Iω η
ηb b

  (4) 

In Eq. (4), ( )tu  refers to the control input, 
B
measB  refers to the measurement of magnetic 

field in the body frame, and ( )tw  represents the Gaussian-distributed white noise. In addition, 
the space model with external disturbance considered gravity gradient torque and torque 
generated due to air friction and solar radiation wind as the covariance matrix (Q) as 
presented in Eq. (5). 
  

 

   
 

     
 

4 4 4 3 4 3

2 2 2
3 4 3 3 3 3

2
3 4 3 3 3 3

,  ~ 0, ,        k D k GGT SRP AD

bias k
RRW

t t t N
t

  



  

  

  

                   

0 0 00
w η w Q Q 0 I 0

η 0 0 I
 (5) 

� (3)

2.2 Attitude Determination Based on EKF 
 

For the EKF to estimate the attitude state of the cube satellite, a linear Kalman filter, 
which linearized a non-linear system at the nominal point, was used (Jang 2016). Eq. (1) 
expresses the attitude information of the satellite. ˆ( )tx  refers to quaternions, ˆ ( )tω  an angular 

rate, and 
ˆ ( )tb  a gyro bias. The superscript of each variable expresses an estimate. 

 

 

 
 
 

0 1 2 3

1 2 3

1 2 310 1

ˆ        ˆ ( )
ˆ ˆˆ( ) ( ) ,    
ˆ ˆ( )

T

T

T

q q q qt
t t

t b b b

  



 
 

  
   

qq
x ω ω

b b   (1) 
 
The kinematics equation of quaternion can be notated as it is divided into quaternion 

ˆ ( )tq  and angular velocity ˆ ( )tω  as presented in Eq. (2). 
 

 

1 1ˆ ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( )
2 2

t t t t t q Ω ω q Ξ q ω
  (2) 

 
1 2 3

1 3 2

2 3 1

3 2 1 4 4

0
0

( )
0

0

  
  
  
  



   
  
 
  

Ω ω  

1 2 3

0 3 2

3 0 1

2 1 0 4 3

q q q
q q q
q q q
q q q



   
  
 
  

Ξ q

 
 
The non-linear equation of the state variable is presented in Eq. (3), which is specified in 

detail in Eq. (4). 

             ˆ ˆ , ,   ~ 0,t t t t t N x f x u w w Q
  (3) 

 

   

 

 1

1 ˆ ˆ( ) ( )ˆ ( ) 2
ˆ ˆ ˆˆ ( ), ( ) ( ) ( ) ( ) ( ) ( ( )) ( )

( )ˆ 1( ) ˆ ( )

B
LB

B
k meas D

bias

t t
t

f t t t t t t t t t
tt t





 
                              

Ω ω q
q 0

x u w ω w I u B ω Iω η
ηb b

  (4) 
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In Eq. (4), u(t) refers to the control input, BB
means refers 

to the measurement of magnetic field in the body frame, 

and w(t) represents the Gaussian-distributed white noise. 

In addition, the space model with external disturbance 

considered gravity gradient torque and torque generated 

due to air friction and solar radiation wind as the covariance 

matrix (Q) as presented in Eq. (5).
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Linearization is required to use the EKF as presented in Eq. (6). 
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 In Eq. (8), 
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LR  refers to a partial differential term 

with regard to the quaternion. In Eq. (10), the results that are developed by component can be 
seen. Here, the moment of inertia for each axis is induced by Eq. (11). 
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  Eq. (12) represents the input matrix (G), which is differentiated by the control input, 
and Eq. (13) represents the Gamma matrix. 

Linearization is required to use the EKF as presented in 

Eq. (6).
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Fig. 2.  Difference between flight model (FM) and engineering model (EM) of ADCS.
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Linearization is required to use the EKF as presented in Eq. (6). 
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Eq. (14) exhibits the measurement equation, in which ( )tz  refers to measurement vector, 

ˆ( ( ))h tx  refers to non-linear model vector based on estimate. An error between them can be 
represented by ( )ty  innovation vector. 
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Eq. (14) exhibits the measurement equation, in which z(t) 

refers to measurement vector, h(x̂(t)) refers to non-linear 

model vector based on estimate. An error between them 

can be represented by y(t) innovation vector.
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Table 1 presents measurement vector of estimation 

and control algorithm for eclipse and day in the space 

environment. Since the solar measurement cannot be used 

during eclipse, magnetic field vector bmeans(tk) and angular 

velocity system ωmeans(tk) are used as measurements. In 

addition, a magnetorquer is used in the control so that 

magnetic field measurement cannot be used.

In Eq. (15), the model vector h(x̂ (t)) uses the Earth 

magnetic field and sun model; and RECI
ECEF in Eq. (16) from 

the simplified coordinate conversion, and ~RECI
Local from the 

GPS measurements, the radial, in-track, and cross-track 

coordinate system is adopted using the ECI coordinate 

to calculate ~RECI
Local, and using the estimated Euler angle, 

coordinate conversion is done into the final body-frame so 

that attitude estimation is performed with the method that 

calculates an error using the measured vector in the body-

frame.
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Eq. (14) exhibits the measurement equation, in which ( )tz  refers to measurement vector, 

ˆ( ( ))h tx  refers to non-linear model vector based on estimate. An error between them can be 
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Eq. (17) refers to a linearized equation of the measurement equation, which can be 
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Considering the processor capacity in the OBC, a continuous system was discretized in the 
Van-loan algorithm during time update, and the system's state-transition matrix was 

considered as expm ( )s sCT I CT   as a first order as presented in Eq. (21). 
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Considering the processor capacity in the OBC, a continuous system was discretized in the 
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considered as expm ( )s sCT I CT   as a first order as presented in Eq. (21). 
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The measure update and time update, which is a detailed algorithm of the final EKF can 

be expressed by Eqs. (22) and (23). 
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Furthermore, linearization can be done as shown in Eqs. (26) and (27) for LQG control. 
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The measure update and time update, which is a detailed 

algorithm of the final EKF can be expressed by Eqs. (22) and (23).

Table 1.  Measurement vectors considering space environment.

	 Day Eclipse

Estimation z(tk) =
bmeans(tk)
Smeans(tk)
ωmeans(tk)

z(tk) =
bmeans(tk)
ωmeans(tk)

Estimation
& control

z(tk) =
Smeans(tk)
ωmeans(tk)

z(tk) = ωmeans(tk)
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Since the cube satellite is rotated along the orbit with an angular velocity of n  (mean 

motion), it is designed to be controlled with 0q   by adopting a variable q q n    to make q  
to become n . In addition, because the cube satellite is controlled using the space magnetic 
field, G-matrix varies according to the attitude. Thus, the Kalman gain is calculated using the 
LQR function over the MATLAB in the PC as presented in Eq. (28), whereas the Kalman 
gain should be calculated in real time in the OBC. Thus, the Kalman gain was calculated 
using Potter’s method (Teukolsky et al. 2007) after obtaining the eigenvalue / eigenvector 
solution (Biswa 2003) via the algorithm to find the C language-based steady-state algebraic 
solution as presented in Eq. (29). 
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3. SINGLE-AXIS HILS EXPERIMENT 
 
3.1 Single-Axis Hardware in the Loop Experiment Environment 
 

As shown in Fig. 2, the algorithms of the actual satellite (flight model) and ground 
verification model (engineering model) estimate satellite attitudes, using the magnetic field 
model (IGRF-12) and sun model (JPL, DE405) that are reference vectors, with the 
measurements of the GPS. In the single-axis HILS verification experiment to verify the 
algorithms, compared to the left figure in Fig. 2, however, the reference vectors do not use 
the GPS, but set the initial origin (0°) as shown in the right figure of Fig. 2, in which a three 
sec. mean of the input is used. 

The important point that needs to be considered in the ground experiment in Fig. 3 is 
that since the magnetorquer, which is an actuator of SNUGLITE, is moved with very weak 
force, it cannot be controlled to the preferred attitude if the force due to a twist of fishing line 
and the force due to elasticity are larger than the input in the torquer that is controlled. Thus, 
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Since the cube satellite is rotated along the orbit with an angular velocity of n  (mean 

motion), it is designed to be controlled with 0q   by adopting a variable q q n    to make q  
to become n . In addition, because the cube satellite is controlled using the space magnetic 
field, G-matrix varies according to the attitude. Thus, the Kalman gain is calculated using the 
LQR function over the MATLAB in the PC as presented in Eq. (28), whereas the Kalman 
gain should be calculated in real time in the OBC. Thus, the Kalman gain was calculated 
using Potter’s method (Teukolsky et al. 2007) after obtaining the eigenvalue / eigenvector 
solution (Biswa 2003) via the algorithm to find the C language-based steady-state algebraic 
solution as presented in Eq. (29). 
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3.1 Single-Axis Hardware in the Loop Experiment Environment 
 

As shown in Fig. 2, the algorithms of the actual satellite (flight model) and ground 
verification model (engineering model) estimate satellite attitudes, using the magnetic field 
model (IGRF-12) and sun model (JPL, DE405) that are reference vectors, with the 
measurements of the GPS. In the single-axis HILS verification experiment to verify the 
algorithms, compared to the left figure in Fig. 2, however, the reference vectors do not use 
the GPS, but set the initial origin (0°) as shown in the right figure of Fig. 2, in which a three 
sec. mean of the input is used. 

The important point that needs to be considered in the ground experiment in Fig. 3 is 
that since the magnetorquer, which is an actuator of SNUGLITE, is moved with very weak 
force, it cannot be controlled to the preferred attitude if the force due to a twist of fishing line 
and the force due to elasticity are larger than the input in the torquer that is controlled. Thus, 
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verification model (engineering model) estimate satellite attitudes, using the magnetic field 
model (IGRF-12) and sun model (JPL, DE405) that are reference vectors, with the 
measurements of the GPS. In the single-axis HILS verification experiment to verify the 
algorithms, compared to the left figure in Fig. 2, however, the reference vectors do not use 
the GPS, but set the initial origin (0°) as shown in the right figure of Fig. 2, in which a three 
sec. mean of the input is used. 

The important point that needs to be considered in the ground experiment in Fig. 3 is 
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the maximum torque that can be produced by the cube 

satellite can be calculated considering dip angle 55° as 

presented in Eq. (32).
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magnetic field in the Z-axis, the maximum torque that can be produced by the cube satellite 
can be calculated considering dip angle 55° as presented in Eq. (32). 
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Next, the Engineering Model (EM) was manufactured and A3200 of Gomspace was 

used as the OBC as shown in Fig. 4. 
 

3.2 Single-Axis Hardware in the Loop Experiment Result 
 
3.2.1 Attitude estimation result 
 

The single-axis HILS verification experiment in the yaw direction was conducted with 
regard to attitude estimation and control algorithm of the cube satellite. Fig. 5 shows that 
when the cube satellite is rotated one turn in the yaw direction, the estimation error is RMS 
1.6° at each axis on average, and can differ up to 4.0°, which can also be seen by referring to 
Table 2. Compared to the requirement conditions in Table 3, it is within 5° which satisfies the 
performance of estimation error. 
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the LQG algorithm based on the estimation performance in Section 3.2.1. c  in Figs. 6 and 7 

refers to the control goal, est  refers to the estimated attitude result, and ref  is the actual 
yaw attitude value acquired through the image. Fig. 7 shows that when the initial value is 
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of control that is performed with regard to 0c    and 30c    in the yaw direction using 

the LQG algorithm based on the estimation performance in Section 3.2.1. c  in Figs. 6 and 7 

refers to the control goal, est  refers to the estimated attitude result, and ref  is the actual 
yaw attitude value acquired through the image. Fig. 7 shows that when the initial value is 

�
(33)

Next, the Engineering Model (EM) was manufactured and 

A3200 of Gomspace was used as the OBC as shown in Fig. 4.

3.2 Single-Axis Hardware in the Loop Experiment Result

3.2.1 Attitude estimation result

The single-axis HILS verification experiment in the yaw 

direction was conducted with regard to attitude estimation 

and control algorithm of the cube satellite. Fig. 5 shows 

that when the cube satellite is rotated one turn in the yaw 

direction, the estimation error is RMS 1.6° at each axis on 

average, and can differ up to 4.0°, which can also be seen by 

referring to Table 2. Compared to the requirement conditions 

in Table 3, it is within 5° which satisfies the performance of 

estimation error.

3.2.2 Attitude estimation and control result

The attitude estimation and control results of the single-

axis cube satellite are the results of control that is performed 

Table 2.  Estimation error of Euler angle.

Roll angle error (°) Pitch angle error (°) Yaw angle error (°)
RMS
Max

1.5
2.5

1.6
3.4

1.7
4.0

Table 3.  Estimation performance of yaw angle.

RMS angle error (°) MAX angle error (°) Requirement (°)
Estimation error 2.7 1.6 < 5.0

Fig. 3.  Difference between flight model (FM) and engineering model (EM) 
of ADCS.

Fig. 4.  Signal block diagram of engineering model (EM) cubesat.

Fig. 5.  Estimation error of Euler angle.
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with regard to ψc = 0° and ψc = 30° in the yaw direction using 

the LQG algorithm based on the estimation performance in 

Section 3.2.1. ψc in Figs. 6 and 7 refers to the control goal, ψest 

refers to the estimated attitude result, and ψref is the actual 

yaw attitude value acquired through the image. Fig. 7 shows 

that when the initial value is ψc = 35° and the control goal 

is  ψc = 0°, the result is converged after 200 sec. The initial 

value in Fig. 7 is  ψc = 0°, and the control goal is  ψc = 30°. The 

control performance reveals about 1.1° of RMS, and 2.0°, 3.0° 

of maximum values, which are very similar, as presented 

in Table 4. In addition, since it exhibited 10° or smaller in 

the three-axis, which was the requirement, it was satisfied 

within 5.77° (10°/√
_
3 = 5.77°) on the basis of single-axis. Here, 

the result obtained through the images (10 sec interval after 

convergence) was used as the yaw reference value (green 

point in Figs. 6 and 7).

4. CONCLUSIONS

This study compared the attitude determination and 

control algorithm, Attitude Determination and Control 

System (ADCS) of the cube satellite with the results via the 

SILS to verify the algorithm in the actual space environment 

through the PILS verification. It also verified the estimation 

performance and accuracy through the performance of the 

actual sensor via the single-axis HIL verification experiment 

in the ground. In addition, it verified the specifications 

of the sensors to be mounted in the actual cube satellite, 

and set their values to covariance values of the EKF and 

LQG filters. In order to obtain the measurement accurately 

without errors as much as possible, sensor error modeling 

and compensation were conducted. Afterward, the ADCS 

algorithm was verified in the ground through the HILS 

procedure. In particular, a single-axis HILS, which was 

advantageous in terms of practical viewpoints and cost-

effectiveness, was used to verify the algorithm.

Finally, the attitude estimation and control results were 

numerically compared with the requirements, and the result 

showed that the estimation accuracy exhibited an error of 

up to 4.8° when point angle three-axis was considered, and 

the control accuracy proved that estimation and control 

can be estimated within up to 3°. These experimental 

results were obtained using the halogen lamp in the indoor. 

Thus, when actual sun measurements are used during 

space mission while the cube satellite rotates the orbit, the 

estimation accuracy is expected to improve.
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