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1. INTRODUCTION

The satellite navigation system is a typical system that 

provides Positioning, Navigation, and Timing (PNT) 

information and is widely used in various fields and daily life 

from industrial infrastructure to personal mobile phones. 

Research on precise positioning using Global Navigation 

Satellite System (GNSS) is also being performed in the field 

of land transportation. Positioning that could not distinguish 

traffic lanes in the past developed into precise positioning 

that distinguish traffic lanes today. Precise positioning is a 

positioning technique that uses code measurements as well 

as carrier phase measurements, which begins with precise 

positioning techniques in the fields of geodesy and surveying 

(Leick et al. 2015). However, the land transportation 

environment has difficulties in receiving GNSS signals due 

to structures such as skyscrapers which in turn degrades 

the precise positioning performance. In order to overcome 
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this problem, solutions that use a single satellite navigation 

system are evolving into multi-GNSS that combine other 

satellite navigation systems such as China's BDS and 

Russia's GLONASS. Research on multi-GNSS solutions 

offers the advantage of securing more visible satellites 

than when using a single satellite navigation system and 

thus improving positioning environments. However, when 

performing research on multi-GNSS solutions, a way to find 

the combination of satellites that optimize the positioning 

performance should be considered. Recent studies on 

satellite selection schemes include the chaotic particle 

swarm optimization (CPSO)-based satellite selection method 

(Wang et al., 2018) and multi-Constellation Weighted DOP 

(MWDOP)-based satellite selection method (Kim et al. 2018). 

The CPSO-based satellite selection scheme proposed by 

Wang et al. (2018) is more adaptive than other algorithms 

and is capable of fast satellite selection. The MWDOP-based 

satellite selection scheme proposed by Kim et al. (2018) is 

a method that uses MWDOP sensitivity, which provides 

better performance than using dilution of precision (DOP) 

sensitivity.

In this paper, we propose a positioning performance 

index which considers the measurement quality and satellite 
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positioning information to improve precise positioning 

performance. This study also proposed a measurement 

quality index that indicates the measurement quality to 

be reflected in the positioning performance index. The 

measurement quality refers to the delay locked loop (DLL) 

tracking error reflected in the code measurement and 

is influenced by the strength of the received signal. This 

paper is composed of 6 chapters. Chapter 2 analyzes the 

strength of the received signal and the quality of the code 

measurements according to the elevation angle and proposes 

a measurement quality index based on this. Chapter 3 

describes the relationship between the accuracy of the float 

solution and the success rate of the fixed solution in precise 

position technology. Chapter 4 proposes a precise positioning 

performance index to improve precise positioning 

performance. Chapter 5 demonstrates the effectiveness of 

the proposed precise positioning performance index by using 

actual measurements and shows that the precise positioning 

performance improved when using the proposed index and 

Chapter 6 draws the conclusion.

2. MEASUREMENT QUALITY ANALYSIS 
FOR PRECISE POSITIONING

The relative positioning-based precise positioning solution 

uses the measurement which is the difference between the 

reference station measurement and user measurement. 

The differences between the receivers and the satellites 

were performed when differencing the measurements. The 

difference between the receivers has the effect of removing 

the error components such as the satellite clock error, the 

ionospheric delay, and tropospheric delay included in the 

measurement, and the difference between the satellites 

has the effect of removing errors generated at the receiver 

side. The power of the received signals varies according to 

the incident direction of the satellite signal and the tracking 

loop performance changes according to the received signal 

power, and the tracking error of the tracking loop is shown as 

a component of the measurement error. Since the tracking 

error is not a bias, it cannot be removed by differencing 

the measurements. Therefore, this section analyzed the 

measurement quality which indicates the measurement 

error, through the relationship between the received signal 

incidence angle, received signal power, and DLL jitter.

2.1 The Relationship Between The Elevation Angle and 

Received Signal Power

The measurement is influenced by the received signal 

power, resulting in changes in the quality of the measurement. 

The received signal power changes according to the elevation 

angle at which the satellite signal is received. Factors 

influencing the change of received signal power according 

to the elevation angle can be divided into the geometric 

distance between the receiver and satellite and the changes 

in gain of the transmitting and receiving antenna according 

to the elevation angle.

The geometric distance between the receiver and satellite 

is close when the elevation angle is high, and far when the 

elevation angle is low. However, since the transmission 

antenna is designed to have similar received signal power at 

the nearest and farthest points to the reception point when 

transmitting signals from satellites, the change in received 

signal power due to the geometric distance is considered to 

have a minimal effect on the measurement quality (Kaplan & 

Hegarty 2005).

Second, the power of the received signal is changed by 

the changes in gain of the receiving antenna according to 

the elevation angle. The GNSS reception antenna has the 

highest gain when the elevation angle is high and the lowest 

gain when the elevation angle is low. The difference between 

the antenna gains when the elevation angle is high and 

when the elevation angle is low is about 10dB with respect 

to commercial receivers. In other words, the received signal 

power according to the elevation angle is more influenced 

by the antenna gain change according to the elevation angle 

than by the geometric distance change between the satellite 

and receiver (Kaplan & Hegarty 2005).

2.2 The Relationship Between The Received Signal Power 

and Measurement Quality

In order to analyze the correlation between received signal 

power and measurement quality, it is necessary to know 

the process from the point of receiving the GNSS signal to 

generating the measurement.

GNSS signals are sent to the GNSS receiver via the GNSS 

reception antenna and the intermediate frequency (IF) 

signals are obtained through the RF front-end of the GNSS 

receiver. IF signals are multiplied by the replica code and 

replica carrier and then transported to the correlator. The 

correlator output is used to acquire and track the GNSS 

signals. The GNSS receiver then keeps track of the GNSS 

signals and collects the positioning data and synchronizes 

it with the positioning data to generate measurements of 

the corresponding satellite at the GNSS receiver. In order to 

maintain signal tracking in the GNSS receiver, a DLL and a 

frequency locked loop (FLL) or phase locked loop (PLL) is 

used and the correlation value is used as input for the DLL 
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and FLL/PLL to maintain synchronization between the 

received signal and replica signal.

GNSS signal tracking must be maintained to obtain 

measurements, and changes in the power of the received 

signal affect the discriminating performance of the 

discriminator, which in turn leads to the loop filter and 

affects the signal tracking performance. For example, when 

the received signal power is low, the influence of the noise 

on the correlation value increases relatively which causes a 

large jitter in the output of the discriminator, which in turn 

increases the signal tracking errors and eventually degrades 

the quality of the measurement. On the other hand, when the 

received signal power is high, the influence of noise on the 

correlation value relatively decreases, which reduces the jitter 

in the discriminator output, and the reduced jitter improves 

the measurement quality by reducing the signal tracking 

errors. Therefore, when the received signal power is high, 

the quality of the measurement is improved, and when the 

received signal power is low, the quality of the measurement 

is reduced (Kaplan & Hegarty 2005).

The DLL error (
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where 0C N  is the received signal power, nB  is the code loop noise bandwidth (Hz), D  is the E-L 
correlator chip spacing (chips), T  is the integration time, feB  is the front-end double side-band bandwidth 
(Hz), and cR  is the chip rate. 

The DLL error according to the received signal power can be obtained using Eq. (1) as shown in Fig. 
1. In Fig. 1, the horizontal axis represents the received signal power and the vertical axis indicates the 
DLL error. The DLL error increases as the received signal power decreases, and the DLL error decreases 
as the received signal power increases. Since the DLL error is reflected in the measurement error, the 
impact on the measurement quality according to the received signal power can be inferred through Fig. 1. 
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Fig. 1.  Delay lock loop jitter versus C/N0.
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the elevation angle, the double difference measurement was 

derived by combining the measurements of a low elevation 

satellite and a high elevation satellite in the same time zone, 

and the double difference measurements according to 

elevation angle combinations are shown in Fig. 2.

Fig. 2a shows the double difference measurement between 

satellites with similar elevation changes, and Fig. 2b shows 

the double difference measurements between satellites with 

different elevation changes. In Fig. 2a, it can be confirmed 

that the quality of the measurements in sections where 

both satellites have high elevation angles is better than the 

quality of the measurements in sections with low elevation 

angles. On the other hand, the quality of Fig. 2b is generally 

lower than that of the sections with high elevation angles in 

Fig. 2a. This can be considered as a basis for the changes in 

measurement quality depending on the elevation angle.

Sections 2.1 and 2.2 summarize the influence of the 

received signal power according to the elevation angle on 

the measurement quality. However, Section 2.3 analyzes the 

results of computing the difference of the measurements 

of different satellites, deriving relative results that can 

be changed according to the combination of differential 

satellites rather than fixed results during measurement 

quality analysis. This means that it is difficult to derive 

numerical measurement quality independently for each 

measurement. When deriving measurement quality, a 

method to derive measurement quality using only the 

measurements of the corresponding satellite is needed, and 

the following section summarizes the method for deriving 

independent measurement quality for each satellite.

2.4 Code Measurement Quality Index

This section proposes an independent code measurement 

quality index for each satellite. The proposed index indicates 

the effect of DLL tracking errors reflected in the code 

measurements of satellite i as shown in Eq. (4). This index 

is used for relative comparison between measurements 

by visible satellite. In Eq. (4), CMQI means the code 

measurement quality index.
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Fig. 2.  Double-differenced code measurements according to elevation angle.
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in eliminating the influence due to the single difference of the 

clock error.
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are shown in Fig. 4. From Fig. 4, it can be confirmed that the 

receiver clock error reflected in the measurement is removed. 

Although this includes the observation error of the carrier 

phase measurement, it is much smaller than the observation 

error of the code measurement, so it is valid for analyzing the 

code tracking error according to the elevation angle.
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SOLUTION SUCCESS RATE
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chance that the fixed solution performance will improve if the 

float solution performance is improved. In addition, the main 

point of this paper is to propose a new method of selecting 

visible satellites considering the quality of measurements to 

improve the precise positioning performance. Therefore, this 

study only covers the float solution performance of precise 

positioning.
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Eq. (5) (Teunissen & Montenbruck 2017).
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Fig. 3.  Single-differenced code and carrier phase measurements.



260    JPNT 7(4), 255-265 (2018)

https://doi.org/10.11003/JPNT.2018.7.4.255

(Teunissen & Montenbruck 2017).

	

to the baseline component of the fixed solution. At this time, the probability that the ambiguity fixed 
solution is true follows Eq. (6) (Teunissen & Montenbruck 2017). 
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other words, the float solution performance affects the fixed solution performance, which indicates the 
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positioning and the measurement quality of the corresponding satellites. This relationship can be derived 
from a relational expression for obtaining the covariance of the position estimates. Eq. (9) is the 
measurement model linearization equation for absolute positioning, and Eq. (10) estimates the change in 
position by Eq. (9) using the least squares method, and Eqs. (11) to (13) show the relationship between 
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where   is the measurement residual, H  is the geometric matrix, x  is the estimated position error, 
and   is the residual error. 2

UERE  represents the measurement quality, and GDOP is the term determined 
by satellite arrangement. The GDOP value becomes smaller when the satellite arrangement is good and 
becomes larger when it is bad. 

In the above context, the relationship between measurement quality, GDOP, and positioning 
accuracy can also be summarized for relative positioning. This paper assumes a short-baseline 
environment, and the linear equation for the double difference measurement model can be expressed as 
Eq. (14). 
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becomes larger when it is bad. 

In the above context, the relationship between measurement quality, GDOP, and positioning 
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Fig. 4

Fig. 4.  Single-differenced code minus carrier phase measurement.
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to the baseline component of the fixed solution. At this time, the probability that the ambiguity fixed 
solution is true follows Eq. (6) (Teunissen & Montenbruck 2017). 
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where   is the measurement residual, H  is the geometric matrix, x  is the estimated position error, 
and   is the residual error. 2

UERE  represents the measurement quality, and GDOP is the term determined 
by satellite arrangement. The GDOP value becomes smaller when the satellite arrangement is good and 
becomes larger when it is bad. 

In the above context, the relationship between measurement quality, GDOP, and positioning 
accuracy can also be summarized for relative positioning. This paper assumes a short-baseline 
environment, and the linear equation for the double difference measurement model can be expressed as 
Eq. (14). 
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function. 

The ambiguity dilution of precision (ADOP) is improved as the covariance of the ambiguity float 
solution becomes smaller, and as the ADOP is improved, the probability distribution section of the right 
term of Eq. (6) becomes wider, and the probability of finding the ambiguity fixed solution increases. In 
other words, the float solution performance affects the fixed solution performance, which indicates the 
performance of the precise positioning technique. 
 
4. POSITIONING ACCURACY INDEX 
 

The positioning performance is influenced by the arrangement of visible satellites used for 
positioning and the measurement quality of the corresponding satellites. This relationship can be derived 
from a relational expression for obtaining the covariance of the position estimates. Eq. (9) is the 
measurement model linearization equation for absolute positioning, and Eq. (10) estimates the change in 
position by Eq. (9) using the least squares method, and Eqs. (11) to (13) show the relationship between 
measurement quality, satellite arrangement, and covariance of estimated variables (Misra & Enge 2006). 
 

H x           (9) 

  1
ˆ T Tx H H H 


        (10) 

    12ˆ T
UERECov x H H


      (11) 

  1TGDOP trace H H


     (12) 

  UERERMS Estimation Error GDOP     (13) 

 
where   is the measurement residual, H  is the geometric matrix, x  is the estimated position error, 
and   is the residual error. 2

UERE  represents the measurement quality, and GDOP is the term determined 
by satellite arrangement. The GDOP value becomes smaller when the satellite arrangement is good and 
becomes larger when it is bad. 

In the above context, the relationship between measurement quality, GDOP, and positioning 
accuracy can also be summarized for relative positioning. This paper assumes a short-baseline 
environment, and the linear equation for the double difference measurement model can be expressed as 
Eq. (14). 

� (13)

where Δρ is the measurement residual, H is the geometric 

matrix, ∆x is the estimated position error, and ε is the residual 

error. σ2
UERE represents the measurement quality, and GDOP is 

the term determined by satellite arrangement. The GDOP 

value becomes smaller when the satellite arrangement is 

good and becomes larger when it is bad.

In the above context ,  the relationship between 

measurement quality, GDOP, and positioning accuracy 

can also be summarized for relative positioning. This paper 

assumes a short-baseline environment, and the linear 

equation for the double difference measurement model can 

be expressed as Eq. (14).

	 
a a b aDD C H x DD v          (14) 

 
where DD is the double difference operator, a  is the measurement residual, C is the difference 
operator between satellites, aH  is the geometric matrix, bx  is the estimated baseline error, and av  is the 
measurement residual error. The parameters above are as shown in Eq. (15). 
 

  

 

1 1

1 1

1 2
ˆ ˆ ˆ

1 0 0 0 1
0 1 0 0 1

0 0 0 1 1

o o o

M M
a u u r r

M M
a u u r r

M
a x x x

v v v v v

H h h h

C

SD I I
DD C SD

           
   
   
 
  
 
  

 

 

   (15) 

 
where M is the number of visible satellites, u and r are the receiver and reference station receiver 
indications, 0x̂  is the position vector estimated at the previous point, and SD is the difference operator 
between the receivers. 

Eq. (14) can be replaced and simply reorganized as shown in Eq. (16). 
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where Q  is a matrix of covariance of the measurement residual errors at the reference station and user 
receivers. 

If the measurements collected are independent of each other and size of the errors is the same, the 
relative positioning accuracy from Eq. (16) can be defined as Eq. (18) (Park 1997). 
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Expanding Eq. (18) by substituting Eq. (16) results in Eq. (19). 
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where Q  is a matrix of covariance of the measurement residual errors at the reference station and user 
receivers. 

If the measurements collected are independent of each other and size of the errors is the same, the 
relative positioning accuracy from Eq. (16) can be defined as Eq. (18) (Park 1997). 
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where Q  is a matrix of covariance of the measurement residual errors at the reference station and user 
receivers. 

If the measurements collected are independent of each other and size of the errors is the same, the 
relative positioning accuracy from Eq. (16) can be defined as Eq. (18) (Park 1997). 
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Expanding Eq. (18) by substituting Eq. (16) results in Eq. 

(19).
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The relative geometry dilution of precision ( RGDOP ) defined in Eq. (19) is an equation defined 

using the covariance matrix of relative position ˆbx  estimated from Eq. (16). However, since ,SDQ  in Eq. 

(19) cannot be calculated in general, we can calculate ExpectedRGDOP  by substituting CMQI , which is 
proposed in this paper, into Eq. (19) as shown in Eq. (20). 
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Eq. (20) can be used as an index for improving the precise positioning performance by using the 

measurement quality index and satellite arrangement information. If the size of the measurement error is 
reduced or if the measurement of a large error is removed, the size of CMQI  becomes smaller, which 
makes ExpectedRGDOP  smaller. On the contrary, if the magnitude of the measurement error increases, 

ExpectedRGDOP  becomes larger. Likewise, when the satellite arrangement is good, ExpectedRGDOP  
becomes smaller by term CH , and conversely, when the satellite arrangement is bad or when the number 
of satellites decreases, ExpectedRGDOP  is increased by term CH . In other words, when ExpectedRGDOP  

increases through Eq. (20), the positioning performance is lowered, and conversely, when ExpectedRGDOP  
becomes smaller, the positioning performance improves. 

In order to use ExpectedRGDOP , it is necessary to know the measurement quality of the visible 
satellite. First, CMQI  through a measurement of a random length is derived. Next, one of the visible 
satellites is removed and CMQI  of the corresponding satellite is exclued to derive ExpectedRGDOP . 

ExpectedRGDOP  is obtained by removing visible satellites one by one, and ExpectedRGDOP  which displays 
the most significant drop in precise positioning performance is determined. This reveals which of the 
visible satellites should be excluded when performing precise positioning, and then precise positioning 
should be performed by excluding the corresponding visible satellite. 
 
5. EXPERIMENTAL RESULTS 
 

This section analyzed the effectiveness of CMQI proposed in Section 2.4 and the Expected RGDOP 
proposed in Section 4. In addition, Eq. (6) of Section 3 was considered when analyzing the Expected 
RGDOP of Section 4. The experiment was performed by post-processing using actual measurements. 

The actual measurements were collected in an open area in a static environment of zero baselines. 
We used 2 survey grade receivers (NovAtel DL-V3) and high performance antennas (NovAtel GPS-703-
GGG). The measurement collection period was set to 1 second, and only GPS was considered as the 
navigation system. 
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The relative geometry dilution of precision ( RGDOP ) defined in Eq. (19) is an equation defined 

using the covariance matrix of relative position ˆbx  estimated from Eq. (16). However, since ,SDQ  in Eq. 

(19) cannot be calculated in general, we can calculate ExpectedRGDOP  by substituting CMQI , which is 
proposed in this paper, into Eq. (19) as shown in Eq. (20). 
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Eq. (20) can be used as an index for improving the precise positioning performance by using the 

measurement quality index and satellite arrangement information. If the size of the measurement error is 
reduced or if the measurement of a large error is removed, the size of CMQI  becomes smaller, which 
makes ExpectedRGDOP  smaller. On the contrary, if the magnitude of the measurement error increases, 

ExpectedRGDOP  becomes larger. Likewise, when the satellite arrangement is good, ExpectedRGDOP  
becomes smaller by term CH , and conversely, when the satellite arrangement is bad or when the number 
of satellites decreases, ExpectedRGDOP  is increased by term CH . In other words, when ExpectedRGDOP  

increases through Eq. (20), the positioning performance is lowered, and conversely, when ExpectedRGDOP  
becomes smaller, the positioning performance improves. 

In order to use ExpectedRGDOP , it is necessary to know the measurement quality of the visible 
satellite. First, CMQI  through a measurement of a random length is derived. Next, one of the visible 
satellites is removed and CMQI  of the corresponding satellite is exclued to derive ExpectedRGDOP . 

ExpectedRGDOP  is obtained by removing visible satellites one by one, and ExpectedRGDOP  which displays 
the most significant drop in precise positioning performance is determined. This reveals which of the 
visible satellites should be excluded when performing precise positioning, and then precise positioning 
should be performed by excluding the corresponding visible satellite. 
 
5. EXPERIMENTAL RESULTS 
 

This section analyzed the effectiveness of CMQI proposed in Section 2.4 and the Expected RGDOP 
proposed in Section 4. In addition, Eq. (6) of Section 3 was considered when analyzing the Expected 
RGDOP of Section 4. The experiment was performed by post-processing using actual measurements. 

The actual measurements were collected in an open area in a static environment of zero baselines. 
We used 2 survey grade receivers (NovAtel DL-V3) and high performance antennas (NovAtel GPS-703-
GGG). The measurement collection period was set to 1 second, and only GPS was considered as the 
navigation system. 

� (21)

Eq. (20) can be used as an index for improving the precise 

positioning performance by using the measurement quality 

index and satellite arrangement information. If the size of 

the measurement error is reduced or if the measurement of 

a large error is removed, the size of CMQI becomes smaller, 

which makes RGDOPExpected smaller. On the contrary, if the 

magnitude of the measurement error increases, RGDOPExpected 

becomes larger. Likewise, when the satellite arrangement 

is good, RGDOPExpected becomes smaller by term Hc, and 

conversely, when the satellite arrangement is bad or when 

the number of satellites decreases, RGDOPExpected is increased 

by term Hc. In other words, when RGDOPExpected increases 

through Eq. (20), the positioning performance is lowered, 

and conversely, when RGDOPExpected becomes smaller, the 

positioning performance improves.
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In order to use RGDOPExpected, it is necessary to know the 

measurement quality of the visible satellite. First, CMQI 

through a measurement of a random length is derived. 

Next, one of the visible satellites is removed and CMQI of 

the corresponding satellite is exclued to derive RGDOPExpected. 

RGDOPExpected is obtained by removing visible satellites one 

by one, and RGDOPExpected which displays the most significant 

drop in precise positioning performance is determined. 

This reveals which of the visible satellites should be 

excluded when performing precise positioning, and then 

precise positioning should be performed by excluding the 

corresponding visible satellite.

5. EXPERIMENTAL RESULTS

This section analyzed the effectiveness of CMQI proposed 

in Section 2.4 and the Expected RGDOP proposed in 

Section 4. In addition, Eq. (6) of Section 3 was considered 

when analyzing the Expected RGDOP of Section 4. The 

experiment was performed by post-processing using actual 

measurements.

The actual measurements were collected in an open area 

in a static environment of zero baselines. We used 2 survey 

grade receivers (NovAtel DL-V3) and high performance 

antennas (NovAtel GPS-703-GGG). The measurement 

collection period was set to 1 second, and only GPS was 

considered as the navigation system.

The first analysis used CMQI to analyze the quality of code 

measurements. The quality of the code measurements using 

actual measurements values are shown in Fig. 5.

For measurements with low elevation angles, the CMQI is 

high due to low code measurement quality as shown in Fig. 

5. Removing measurements with low CMQI may deteriorate 

the satellite arrangement and result in degrading the 

navigation performance. Therefore, we can pinpoint which 

measurement degrades the precise positioning performance 

when performing precise positioning by using the expected 

Fig. 5

Fig. 5.  The result of the code measurement quality.
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RGDOP proposed in this paper.

The second analysis confirmed the effectiveness of 

Expected RGDOP by comparing the RGDOP (Eq. (18)) 

derived from the positioning results with the Expected 

RGDOP (Eq. (20)) using CMQI. Fig. 6 is a graph for the 

effectiveness analysis of Expected RGDOP.

Fig. 6 indicates that Expected RGDOP shows the same 

trends as RGDOP using positioning results. This shows 

that the combination of measurements with high precision 

positioning accuracy can be obtained by using only 

satellite arrangement information and CMQI, which is the 

measurement quality index before precise positioning.

Fig. 6 Remove PRN 3 Remove PRN 14 Remove PRN 16

Remove PRN 22 Remove PRN 23 Remove PRN 26

Remove PRN 29 Remove PRN 31 Remove PRN 32

Fig. 6.  The results of the RGDOP and the expected RGDOP.

Fig. 7

(a) (b)

Fig. 7.  The results of the precise positioning, (a) the normal float solution, (b) the float solution with the expected RGDOP.



264    JPNT 7(4), 255-265 (2018)

https://doi.org/10.11003/JPNT.2018.7.4.255

As the last step, this study analyzed the precise positioning 

performance of applying Expected RGDOP to precise 

positioning and also derived and analyzed the ambiguity 

resolution success rate together. The precise positioning 

results of applying Expected RGDOP to precise positioning 

are shown in Fig. 7.

The method of applying Expected RGDOP to precise 

positioning is as follows. The measurements for several 

epochs are collected and the CMQI for each satellite number 

is calculated, then the expected RGDOP is calculated by 

using the calculated CMQI. At this time, each of the expected 

RGDOP is calculated by removing one for each measurement, 

and then precise positioning is performed using the lowest 

combination of measurements. As a result, the 2DRMS of 

the float solution of precise positioning improved by about 

20% from 14.6 cm to 11.7 cm, while the CEP increased by 

about 18% from 6 cm to 4.9 cm. In addition, the probability 

of finding the true ambiguity is derived by using Eq. (5) of 

section 3. In order to use Eq. (5), it is necessary to know 

the ADOP. In this paper, it was reflected as the sampled 

covariance which used the float solution ambiguity estimated 

over a number of epochs of float solution ambiguity 

covariance. As a result, the probability of finding the true 

ambiguity before applying Expected RGDOP was 99.12%, and 

99.49% after applying Expected RGDOP. The probability of 

finding the true ambiguity increased by 0.37% when applying 

Expected RGDOP. The results of performing experiments in 

this section confirmed the effectiveness of Expected RGDOP 

by showing improved positioning performance when 

conducting precise positioning using Expected RGDOP.

6. CONCLUSION

This paper proposed a precise positioning performance 

improvement index. For this purpose, it analyzed the 

correlation between received signal strength and DLL 

tracking error, which are factors that affect the quality of 

code measurements that affect the precise positioning 

performance. Through correlation analysis, it also proposed 

a code measurement quality index that indicates the degree 

of DLL tracking error reflected in code measurements. 

In addition, this study proposed expected RGDOP which 

could estimate the positioning accuracy using the proposed 

code measurement quality index and satellite arrangement 

information. In order to review the effectiveness of 

the proposed expected RGDOP, this study performed 

experiments using actual measurements collected in a static 

environment of zero baselines. In addition, the probability 

of finding the true ambiguity was also considered in the 

analysis. The results showed that in the case of using 

expected RGDOP, the precise positioning performance 

improved by about 18 ~ 20% and the probability of finding 

the true ambiguity increased by 0.37% to 99.49%.

As mentioned above, the precise positioning performance 

does not guarantee good performance unconditionally 

just because there are many satellites. There is a trade-

off relationship between satellite arrangement and 

measurement quality. Finding a combination of satellites 

expected to improve precise positioning performance may 

be possible using the proposed expected RGDOP, which can 

express this trade-off relationship.

Future studies will include additional experiments using 

navigation receivers and experiments with various baseline 

settings. We also plan to analyze fixed solutions which this 

paper did not handle.
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