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1. INTRODUCTION

The errors in GPS Standard Point Positioning (SPP) user 
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ABSTRACT

Network RTK is a highly practical technology that can provide high positioning accuracy at levels between cm~dm regardless 

of user location in the network by extending the available range of RTK using reference station network. In particular, unlike 

other carrier-based positioning techniques such as PPP, users are able to acquire high-accuracy positions within a short 

initialization time of a few or tens of seconds, which increases its value as a future navigation system. However, corrections 

must be continuously received to maintain a high level of positioning accuracy, and when a time delay of more than 30 

seconds occurs, the accuracy may be reduced to the code-based positioning level of meters. In case of SSR, which is currently 

in the process of standardization for PPP service, the corrections by each error source are transmitted in different transmission 

intervals, and the rate of change of each correction is transmitted together to compensate the time delay. Using these features 

of SSR correction is expected to reduce the performance degradation even if users do not receive the network RTK corrections 

for more than 30 seconds. In this paper, the simulation data were generated from 5 domestic reference stations in Gunwi, 

Yeongdoek, Daegu, Gimcheon, and Yecheon, and the network RTK and SSR corrections were generated for the corresponding 

data and applied to the simulation data from Cheongsong reference station, assumed as the user. As a result of the experiment 

assuming 30 seconds of missing data, the positioning performance compensating for time delay by SSR was analyzed to be 

horizontal RMS (about 5 cm) and vertical RMS (about 8 cm), and the 95% error was 8.7 cm horizontal and 1cm vertical. This is 

a significant amount when compared to the horizontal and vertical RMS of 0.3 cm and 0.6 cm, respectively, for Network RTK 

without time delay for the same data, but is considerably smaller compared to the 0.5 ~ 1 m accuracy level of DGPS or SBAS. 

Therefore, maintaining Network RTK mode using SSR rather than switching to code-based DGPS or SBAS mode due to failure 

to receive the network RTK corrections for 30 seconds is considered to be favorable in terms of maintaining position accuracy 

and recovering performance by quickly resolving the integer ambiguity when the communication channel is recovered.

Keywords:	 GNSS, network RTK, SSR, operation time, service coverage

positions can be mainly divided into GPS system errors, 

signal path errors, and user related errors. The GPS system 

errors are an error in the satellite itself, such as satellite orbit 

and clock errors. The signal path errors are an error caused 

by the change of the path from GPS satellites to users due 

to the influence of the Earth’s atmosphere, which includes 

ionospheric and tropospheric delay errors. Finally, the user 

related errors are an error that occurs depending on the 
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user’s receiving environment, such as multipath error and 

receiver noise (Misra & Enge 2006).

Methods of differentiating the measurements of reference 

stations and users such as Differential GPS (DGPS) and Real 

Time Kinematics (RTK) have been mainly used to remove the 

errors included in GPS signals and improve the positioning 

performance. These differential augmentation systems 

remove errors based on the high spatial and temporal 

correlation between GPS signal errors, and is an effective 

method when users located at a short distance from the 

reference station apply recent corrections with little time 

delay. While DGPS using code measurements allows the 

correction age of 5 to 10 seconds in the range of about 100 ~ 

150 km from the reference station, RTK using carrier phase 

measurements needs to receive corrections every second 

within a range of about 10 ~ 15 km. If corrections are not 

received for a long period of time, such as 30 seconds, the 

resolved ambiguity cannot be maintained and the positioning 

mode is changed from fixed to float mode, resulting in a 

degradation to code-based accuracy.

A technique that models the Spatial Decorrelation Error 

based on a network between reference stations has been 

developed to efficiently expand the service coverage, and 

the Wide Area Differential GPS (WADGPS) (Kee et al. 1990) 

is widely used for code-based positioning and the Network 

RTK is used for carrier phase-based positioning. In case 

of WADGPS, in order to reduce the influence of temporal 

decorrelation error, the method to transmit correction 

messages for error sources such as satellite orbit and clock 

errors, ionospheric delay at different intervals and generate 

range correction by combining parameters distributed across 

multiple messages is defined as the standard of Satellite 

Based Augmentation System (SBAS) (RTCA 2006). In case 

of Network RTK, the Compact Network RTK method that 

integrates Compact RTK (Kee & Kim 2002) method with 

Network RTK to effectively reduce temporal decorrelation 

error of the carrier phase correction has been proposed (Park 

2008) and applied for research on GNSS infrastructure for 

autonomous vehicles.

Recently, there is a growing interest in State Space 

Representative (SSR) method, which provides carrier phase 

correction by each error source and standardization is 

actively in progress as well (Kee et al. 2013). The SSR message 

was originally proposed for Precise Point Positioning (PPP), 

which was theoretically intended to be used to transmit 

carrier phase corrections for global coverage by each error 

source at different intervals. The characteristics of SSR 

message are expected to complement the performance 

of Network RTK under adverse conditions of transmitting 

corrections, so the purpose of this study is to confirm the 

possibility through simulation.

2. FEATURES OF NETWORK RTK

In order to compensate for the weakness of carrier phase 

positioning that the accuracy decreases as distance from 

the reference station increases, Network RTK extends the 

available range of RTK by configuring the reference station 

network so that users in the service area can maintain 

uniform performance regardless of their location. The 

Network RTK infrastructure performs carrier phase ambiguity 

resolution through double difference of measurements 

between reference stations, and then transmits the network 

RTK correction used to reduce the spatial decorrelation error 

of satellite errors to the user. The Network RTK can be divided 

into Virtual Reference Station (VRS), Flächen Korrektur 

Parameter (FKP), Master-Auxiliary Concept (MAC), Pseudo-

Reference Station (PRS), and individualized Master Auxiliary 

corrections (i-MAX) according to the implementation 

method, and the type of correction used for each method is 

also different (Takac & Zelzer 2008).

VRS is a method that generates and transmits virtual 

carrier phase observation data by modeling data from 3 

reference stations near the user, thereby acquiring the effect 

of having a reference station at user’s location. The form and 

application of correction are identical to the conventional 

single reference station RTK, so the configuration is simple 

and the performance is the highest in terms of accuracy. 

However, since VRS correction is calculated according 

to user’s location, there are limitations in the number of 

simultaneous users and privacy problems, and is somewhat 

unsuitable for the navigation of vehicles because the 

performance degrades as vehicles move farther away from 

the initial position.

T h e  N e t w o r k  R T K  m e t h o d s  t h a t  u s e  o n e - w a y 

communication without exposing user’s location are FKP 

and MAC, and both methods separate GPS error sources into 

dispersive terms and non-dispersive terms and transmit them 

to the user. However, FKP assumes a flat distribution of errors 

for each satellite according to latitude and longitude, and 

provides the user with gradient information of the modeled 

error plane so that the user can compensate the spatial 

decorrelation error on the plane. MAC uses measurements 

or corrections as they are just like the conventional RTCM 

message, but reduces data size by using the difference 

between the Master and Auxiliary reference station, so that 

the user can directly model error by using corrections to 

compensate the spatial decorrelation error. Although there 

may be some difference in the performance between FKP and 
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MAC depending on whether modeling is performed in the 

infrastructure or by the user, theoretically they are equivalent 

concepts.

Based on such one-way communication, Network RTK 

provides highly accurate corrections at levels between 

cm~dm to unlimited users located in the reference station 

network as well as is applicable to moving objects in 

wide areas such as autonomous vehicles, which makes 

it an infrastructure suitable for future high-performance 

navigation. In particular, main advantage for users using 

dual-frequency receivers is that they can acquire an accuracy 

of decimeters with only a few or tens of seconds of latency 

under good satellite visibility conditions.

The observation data used as RTK correction is very 

sensitive to time delay because it includes high-dynamic 

terms such as distance between the receiver and satellite. 

Thus, for unidirectional network RTK services, corrections 

need to be transmitted at least every second using a data 

link of approximately 2400 ~ 4800 bps in a service area of 70 

km radius, and requires a very large bandwidth compared 

to the 100 ~ 200 bps bandwidth of DGNSS using code 

measurements and the 250 bps bandwidth of SBAS (Park et 

al. 2010). When applying Compact Network RTK method, the 

bandwidth can be reduced to approximately 700 bps or less, 

and can easily avoid significant performance degradation 

even with a time delay of about 5 to 7 seconds, so that 

unidirectional Network RTK can be easily implemented even 

in the regions with poor data reception (Park & Kee 2010). 

However, under the domestic expressway environment, 

there are many sections where internet connection is lost 

as shown in Fig. 1, and in some section the connection does 

not automatically recover after about 30 seconds (Kim et 

al. 2013). Therefore, in order to provide stable and accurate 

positioning navigation service, back-up positioning method 

that do not significantly degrade the positioning accuracy 

are required in such poor communication areas, and SSR 

messages, which were intended to be used as correction for 

PPP, are likely to be used as an alternative.

3. RTCM SSR CORRECTION

Unlike SPP, PPP is a positioning technique that improves 

accuracy by applying precise satellite orbit and clock error, 

and atmospheric and crustal movement correction models 

(Lee 2013), and even though the theory has been established 

through static PPP research (Zumberge et al. 1997), it has 

been mainly used for static post-processing due to limitations 

on the number of visible satellites and performance issues 

of satellite orbit estimates. Since then, kinematic PPP 

technique has been proposed (Kouba et al. 2001) and it has 

been applied in various fields including glacier flow velocity 

and crustal displacement according to the increase in the 

constellation such as GLONASS and Beidou in addition 

to GPS and improved precise orbit and clock estimation 

performance. In particular, as the performance of precise 

orbit and clock provided by international organizations 

with global reference stations such as International GNSS 

Service (IGS) has improved significantly, the research and 

application related to PPP have become active and diverse.

Although PPP is a very efficient positioning technique 

depending on its application, the convergence time takes 

about 30 to 60 minutes and the difficulties in real-time 

ambiguity resolution make it difficult to apply in real-time 

applications compared to conventional RTK. In order to 

compensate for this issue, PPP-RTK technique integrating 

PPP and Network RTK has been proposed. It is similar to PPP 

in that the master station calculates and transmits the satellite 

orbit and clock corrections to user, but the ionospheric and 

tropospheric errors are provided based on the observation 

data from the reference station network in order to shorten 

the initial convergence time. The correction provided by 

PPP-RTK is called SSR and it includes satellite orbit and clock 

errors, satellite bias, tropospheric error, and ionospheric 

error.

The SSR distinguishes the types of correction according 

to the characteristics of the error and provides the modeled 

parameters. Since the parameters are modeled by each error 

source, transmission interval is set by considering the rate 

of change of each error source. The transmission interval of 

the rapidly changing satellite clock correction is short as 1 to 

10 seconds and transmission interval of the slowly varying 

Fig. 1.  Test result of latency error analysis (upper: spatial variation of time 
delay, below: temporal variation of position error) (Kim 2013).
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satellite bias is 30 minutes. Among RTK standards discussed 

in the RTCM standards committee, some of SSR messages 

that support PPP have recently been standardized, which are 

level 1 messages related to satellite orbit and clock corrections 

and vertical and slant ionospheric delay correction will be 

added in future (RTCM 2016, Kim & Park 2017).

The above SSR messages, as shown in Table 1 and Fig. 2, 

are designed to provide the satellite orbit, clock error, and 

ionospheric and tropospheric error components in different 

intervals (Lim et al. 2017). As shown in Fig. 3, the satellite orbit 

error correction (δO) provided in SSR message is in the radial 

(eradial), along-track (ealong), and cross-track (ecross) direction, so 

the coordinates need to be converted to the ECEF direction 

(δX) using Eq. (1). In addition, if SSR message is generated 

in long intervals, the time delay should be compensated by 

applying the rate of change of each correction.

	
 

  ⃗⃗⃗⃗  ⃗  [                   ]  ⃗⃗⃗⃗  ⃗       ……..(1) 
 
 

  ⃗⃗  ⃗        ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [                   ]  ⃗⃗⃗⃗  ⃗   ………(2) 
 
 

  ⃗⃗⃗⃗  ⃗  [                   ]  ⃗⃗⃗⃗  ⃗      ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗               (8) 
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In order to apply the satellite orbit error correction 

received by SSR to user measurements, the user estimates the 

broadcast satellite orbit, and corrects the broadcast satellite 

orbit by using satellite orbit correction as shown in Eq. (2).
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� (2)

where rs is the corrected satellite coordinates, and rsbrdc is the 

broadcast satellite coordinates. Using this corrected satellite 

orbit, the users can accurately calculate the distance between 

the receiver and satellite (R) included in the observation 

measurements.

The satellite clock error provided in SSR message consist of 

C0, C1, and C2 polynomial coefficient, and the units of C0, C1, 

and C2 are m, m/s, and m/s2, respectively. Using the satellite 

clock correction received at t0, the correction at t can be 

calculated by using Eq. (3).
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The SSR tropospheric correction provides tropospheric 

delay at grid points and the users interpolate it according 

to their position. The SSR tropospheric correction is not yet 

standardized, but according to the literature (Kim & Park 

2017), it provides GPS Week Second, latitude, longitude, 

altitude, Zenith Hydrostatic Delay (ZHD), and Zenith Wet 

Delay (ZWD) information. The tropospheric delay (δTs
ssr) 

is obtained by converting the delay value provided in 

zenith direction to the value in line-of-sight direction and 

mapping function is used to convert to Observation Space 

Representative (OSR) as shown in Eq. (5).

Fig. 2.  Example of SSR message broadcast (RTCM 2016). Fig. 3.  Satellite obit correction (RTCM 2016).

Table 1.  Standardization status of SSR message.

SSR correction Update rate (s) Parameters Standardization
SV orbit
SV clock
SV HR clock
Ionospheric delay
Tropospheric delay

60
10
1

30
30

radial / along-track / cross-track correction
C0, C1, C2

Grid Point (lat/lon), STEC
Grid Point (lat/lon), ZTD, ZWD

MT1057
MT1058
MT1062

On-going
On-going
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Hydrostatic Delay (ZHD), and Zenith Wet Delay (ZWD) information. The tropospheric delay (      ) is 
obtained by converting the delay value provided in zenith direction to the value in line-of-sight direction 
and mapping function is used to convert to Observation Space Representative (OSR) as shown in Eq. (5). 
 

                       ……….(5) 
 
where    is the mapping function of dry delay, and    is the mapping function of wet delay. 

The SSR ionospheric correction provides GPS Week Second, latitude, longitude, altitude, PRN, and 
Slant Total Electron Content (STEC) at grid points and the users interpolate it according to their position. 
Ionospheric delay (        is calculated by converting the STEC considering satellite signal frequency ( ) 
as shown in Eq. (6). 
 

           
            ……….(6) 
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mapping function of wet delay.
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satellite signal frequency (f ) as shown in Eq. (6).
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In addition, the velocity component is transmitted along 

with the satellite clock and orbit corrections in 10-second 

intervals, and since satellite orbit and clock in Ultra-Rapid 

products from IGS are generated in 15-minute intervals, 

assuming that the velocity component is estimated at 

15-minute intervals, noise equal to √
_
2

15∙3600
 times of noise of 

the satellite orbit and clock from IGS was inserted as the 

estimation error.

The results of comparing SSR satellite orbit and clock 

error with 30-second time delays and the estimates from 

the user are shown in Figs. 4 and 5. In case of satellite orbit 

error, a stepwise error occurs every time satellite ephemeris 

is updated, while the satellite clock error takes the form of 

random noise.

In case of the ionospheric error, we collected the GNSS 

measurements from the reference stations in network, and 

then generated the plane model of the ionospheric error 

based on estimated ionospheric error at the ionospheric 

pierce point. Then, we generated the ionospheric error at 

each grid point based on the plane model, and the users 

compute the ionospheric error correction by interpolating 

the ionospheric error at each pierce point and apply it to 

satellite signal. The block diagram for this process is shown 

in Fig. 6, and the plane model of the ionospheric error 

generated by the method above and the results of calculating 

the ionospheric residual errors at each grid point are shown 

in Fig. 7.

In case of the tropospheric error, dry and wet delay errors 

Fig. 4.  SSR ephemeris correction (left) and ephemeris correction error at user side (right).

Fig. 5.  SSR clock correction (left) and clock correction error at user side (right).

Fig. 6.  SSR ionospheric correction modeling process.
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are provided for each latitude and longitude in the same 

manner as the ionospheric delay. We generated a plane 

model of tropospheric dry delay by using dry delay error 

obtained from Saastamoinen model, and generated a plane 

model of wet delay error by regarding the wet delay error 

as the value obtained by subtracting the dry delay error 

calculated by the Saastamoinen model from the tropospheric 

delay error in the simulation. Subsequently, the tropospheric 

correction at the user position is generated by combining the 

tropospheric dry and wet delay at each grid point based on 

the plane model. The block diagram for this process is shown 

in Fig. 8, and the plane model of the tropospheric error 

generated by the method above and the results of calculating 

the tropospheric residual errors at each grid point are shown 

in Figs. 9 and 10.

Since the purpose of this paper is to analyze whether SSR 

message helps to improve the performance of network RTK 

users who have not received network RTK corrections for 

about 30 seconds. We analyzed the positioning error caused 

by the residual error by each satellite in the range-domain 

obtained above. In other words, we assumed that the user 

carrier phase ambiguity was precisely resolved during the 

Fig. 7.  Plane model of ionospheric error (left) and ionospheric residual error at user side(right).

Fig. 9.  Plane model of tropospheric dry part (left) and wet part(right).

Fig. 8.  SSR tropospheric hydrostatic and wet delay plane modeling 
process.
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valid period of Network RTK, and a time delay of 30 seconds 

occurred in normal Network RTK operation. As shown in 

Fig. 11, during this 30-second time delay, the satellite clock 

correction is calculated by the difference between the sum 

of the satellite clock provided by SSR message and the 

High Rate satellite clock and the broadcast satellite clock, 

and the difference between the satellite orbit provided by 

SSR message and the broadcast satellite orbit is calculated 

as the satellite orbit correction, and both corrections are 

projected into the range-domain. In case of the ionospheric 

and tropospheric errors, these errors for each satellite 

are calculated by projecting the corrections provided in 

SSR message into range-domain. As such, range-domain 

corrections by each error source for satellites used in network 

RTK solution is calculated by converting SSR correction to 

OSR correction and the rate of change of each correction is 

used to compensate for time delay.

The results of the above simulation, as shown in Table 

2, show that the Root Mean Square (RMS) of residual of 

satellite orbit and clock error is 1.34 cm, the RMS of residual 

of ionospheric error is 1.77 cm, the RMS of residual of 

tropospheric error is 0.45 cm, and RMS of the sum of total errors 

is 4.16 cm. In addition, the time series of residual distribution of 

each satellite in the range-domain is shown in Fig. 12.

As a result of analyzing the positioning results, after 

projecting the range-domain residual of SSR message due to 

the time delay obtained by the simulation into the position-

domain using the user observation matrix, this is equivalent 

to the positioning results obtained by compensating the time 

delay with the velocity component of SSR message under the 

30 second time delay. As a result of estimating the degree of 

performance degradation by compensating the time delay 

with the velocity component of the correction by each error 

source generated using the SSR message, as shown in Fig. 13 

and Table 3, We confirmed that horizontal residual error is 

5 cm RMS, 8.7 cm 95% and 8 cm RMS, 16 cm 95% for vertical 

residual error. This is a significant amount when compared 

to the horizontal and vertical RMS of 0.3 cm and 0.6 cm, 

respectively, for Network RTK without time delay for the 

same data, but is considerably smaller compared to the 0.5 

~ 1 m accuracy of DGPS or SBAS. Therefore, maintaining 

Network RTK mode using SSR rather than switching to 

code-based DGPS or SBAS mode due to failure to receive 

correction information for 30 seconds is considered to be 

favorable in terms of maintaining system accuracy and 

recovering performance by fast integer ambiguity resolution 

Fig. 10.  Tropospheric modeling error at user side.

Fig. 11.  Concept of integrating SSR into network RTK correction for latency compensation.

Table 2.  Error RMS for each component and total error.

Error source Clock Orbit Iono Tropo Total
RMS (cm) 1.40 1.34 1.77 0.45 4.16

Table 3.  Statistics of SSR-aided positioning results under 30 second data-
cutoff.

Mean (cm) RMS (cm) 95% (cm) Max (cm)
Horizontal error
Vertical error

0.99
0.78

4.94
7.92

8.70
16.23

17.47
36.95
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when the communication channel is recovered.

5. CONCLUSIONS

This paper describes the possibility of contributing 

to stable Network RTK operation by analyzing the 

characteristics of SSR message proposed for PPP and 

predicting its performance through simulation. The Network 

RTK is a practical navigation technique that extends the 

availability of RTK that provides high positioning accuracy at 

levels of cm~dm through a network of reference stations, but 

have to continuously receive corrections to maintain a high 

level of positioning accuracy. On the other hand, in case of 

SSR, which is recently under standardization for PPP service, 

corrections for each error component are transmitted at 

different intervals, information about the rate of change of 

each component is also provided to compensate the time 

delay. Therefore, in the event of time delays of more than 30 

seconds, the robustness against time delay is higher in SSR 

corrections than general Network RTK corrections. In order 

to review the possibility of integrating Network RTK, which 

is a practical positioning technique, with SSR with time 

delay robustness, a performance prediction was conducted 

using GNSS measurements generated by simulation 

based on the location information of 6 stations from the 

National Geographic Information Institute. By generating 

and scheduling SSR corrections from the simulation 

measurements, we confirmed residuals that could occur 

when users did not receive Network RTK corrections for 30 

seconds. As a result of calculating the residuals, the residual 

RMS due to generating and scheduling corrections was about 

4.16cm in the range domain, and when projected to the 

position domain, the RMS errors were 4.94 cm horizontally 

and 7.92 cm vertically. These are significant amounts 

compared to 0.3 cm horizontally and 0.6 cm vertically, which 

are network RTK performance without time delay for the 

same data, but is considerably smaller compared to the 0.5 

~ 1 m accuracy of DGPS or SBAS. Therefore, maintaining 

Network RTK mode using SSR corrections rather than 

switching to code-based DGPS or SBAS mode due to failure to 

receive network RTK corrections for 30 seconds is considered 

to be favorable in terms of maintaining system accuracy and 

recovering performance by fast integer ambiguity resolution 

when the communication channel is recovered.

Although this paper only described about mitigating 

Network RTK performance degradation using SSR messages 
Fig. 12.  Total residual error in range-domain at user side.

Fig. 13.  Total residual error in position-domain at user side.
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for missing data for a long time, since synergies are expected 

between Network RTK and SSR correction in various aspects 

such as improving ambiguity resolution performance, 

keeping and restoring ambiguity, and combining both 

corrections, it is necessary to examine methods to combine 

both corrections through various case studies in future.
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