
JPNT 8(1), 1-12 (2019)
https://doi.org/10.11003/JPNT.2019.8.1.1

Copyright © The Institute of Positioning, Navigation, and Timing

JPNT Journal of Positioning,
Navigation, and Timing

http://www.ipnt.or.kr Print ISSN: 2288-8187 Online ISSN: 2289-0866

1. INTRODUCTION

Currently, global navigation satellite system (GNSS)

receivers are applied to various applications such as ground,

aviation, and maritime. As of the early 2000s when only

the global positioning system (GPS) in the USA and Global

Navigation Satellite System (GLONASS) in Russia were present,

the mainstream of implementing receivers was the use of

single GPS signals or combined signals of GPS and GLONASS.

With the research and development by space power nations,

new GNSSs such as Galileo in Europe and BeiDou in China

were placed in the outer space so various GNSS satellites are

now transmitting signals toward the ground. A large number

of satellites to run GNSSs such as GPS, Galileo, GLONASS, and

Implementation and Experimental Test Result of a Multi-frequency and
Multi-constellation GNSS Software Receiver Using Commercial API
Jin-Su Han, Jong-Hoon Won†

Department of Electrical Engineering, Inha University, Incheon 22212, Korea

ABSTRACT

In this paper, we implement a navigation software of a Global Navigation Satellite System (GNSS) receiver based on a

commercial purpose GNSS software receiver platform and verify its performance by performing experimental tests for

various GNSS signals available in Korea region. The SX3, employed in this paper, is composed of an application program

and a Radio Frequency (RF) frontend, and can capture and process multi-constellation and multi-frequency GNSS signals.

All the signal processing procedure of SX3 is accessible by the receiver software designer. In particular for an easy research

and development, the Application Programing Interface (API) of the SX3 has a flexible architecture to upgrade or change the

existing software program, equipped with a real-time monitoring function to monitor all the API executions. Users can easily

apply and experiment with the developed algorithms using a form of Dynamic Link Library (DLL) files. Thus, by utilizing this

flexible architecture, the cost and effort to develop a GNSS receiver can be greatly reduced.

Keywords:	 GNSS software receiver, multi-constellation and multi-frequency GNSS, API, navigation unit

BeiDou are orbiting around the earth, and the aim is set to

have around 120 satellites in space and more than 90 satellites

visible in open sky by 2020 (Ebner 2014).

Thus, the multi-constellation GNSS receiver technology

used by receiving multiple GNSS signals have been widely

studied from the early 2010s in pace with the system

development speed in each country. That is, as the hardware

development time of receivers is rapidly shortened, receivers

can now be operated using a multi-constellation GNSS

method that can process GPS and GLONASS as well as

multiple GNSSs such as Galileo and BeiDou (Mattos &

Pisoni 2013). However, existing hardware receivers had

drawbacks that cannot change the design values according

to the changing environment time to time. On the other

hand, a large number of design values in GNSS software

receivers can be parameterized and changeable according to

different applications. Due to this, GNSS software receivers

provide highly efficient and convenient methods in terms of

cost effectiveness when collecting and tracking new GNSS

signals and facilitate easy modifications as well (Abbasian

& Petovello 2008). As a result of such advantages, the

performance of receiver system can be upgraded easily and

Received Nov 19, 2018 Revised Feb 14, 2019 Accepted Feb 20, 2019
†Corresponding Author

E-mail: jh.won@inha.ac.kr
Tel: +82-32-860-7406 Fax: +82-32-863-5852

Jin-Su Han https://orcid.org/0000-0002-4204-5077
Jong-Hoon Won https://orcid.org/0000-0001-5258-574X

2 JPNT 8(1), 1-12 (2019)

https://doi.org/10.11003/JPNT.2019.8.1.1

the receiver system can be expanded to an integrated receiver

of GPS, Galileo, GLONASS, and BeiDou based on the basic

architecture of GPS L1 CA code receiver.

In the meantime, research and development on GNSS

software receivers based on universal software radio platform

mounted with commercial radio frequency (RF) and

additional processing unit have been conducted in recent

years (Anghileri et al. 2007). For the development of GNSS

receivers, prior developments on overall receiver systems

covering communication and navigation technologies such

as RF unit, correlator, and navigation unit should be carried

out first. The GNSS software receiver requires highly complex

and complicate calculation in the real-time mode, and the

intermittent data problem is another issue that disturbs real-

time processing of the receiver. In general, filtering, down-

conversion, and analog-to-digital conversion are conducted

with GNSS signals in a GNSS software receiver, which starts

at the radio frequency frontend (RF-frontend). The converted

digital intermediate frequency (IF) signal data stream is

transferred to the main processing unit for de-spreading,

tracking, and positioning tasks, where the signal buffer is

used to collect digitalized IF data and transfer them to the

personal computer (PC) (Chen & Juang 2007).

In summary, a new challenge has emerged in the design

of GNSS receivers with the emergence of various and new

GNSSs and changes in demand by receiver users. The GNSS

software receivers have more advantages than existing GNSS

receivers. One of the advantages in GNSS software receiver

is to re-design and test a new algorithm by users (Wu et al.

2009). In addition, the GNSS software receiver has an ability

to access all steps in the internal signal processing chain

that is in general not possible for existing hardware-based

receivers. This can be useful to research and development

on satellite navigation systems. For this purpose, the

GNSS software receiver provides a flexible application

programming interface (API) that can add, replace, or extend

the functions of the receiver thereby reducing the effort of

advanced receiver designers and the development cost and

duration, significantly (Heinrichs et. al. 2007).

In this paper, a navigation unit is implemented by using the

SX3 API, which is a GNSS software receiver for professional

uses and commercially available in the market. Positioning

using the least square estimation in each of GPS L1 C/A,

GPS L2 P(Y), Galileo E1, GLONASS L1 C/A, and BeiDou B1

is conducted. Furthermore, positioning is conducted using

the multi-constellation GNSSs by combining five GNSSs. By

implementing the navigation unit using GNSS software API

in the above process, this paper proposes a development

method that can prove the reduction in development cost

and time dramatically within a short period of research effort.

This paper is organized as follows: in Chapter 2, the

hardware configuration of SX3 GNSS receiver and software

graphical user interface are described and the structure of

the API is explained. In Chapter 3, the non-linear least square

estimation (NLSE) is introduced as one of the methods that

obtains the positioning results. In Chapter 4, The NLSE

algorithm is applied to the API to obtain the positioning

results and the results are outputted and analyzed. Then, the

effects of the positioning development method using GNSS

software API and the direction that is applicable to the future

research are presented.

2. MULTI-CONSTELLATION
ENVIRONMENT

The multi-constellation environment significantly

influences the reception performance of GPS receivers.

Currently, a large number of GNSS satellites from several

countries are orbiting around the earth. Those nations are

increasing the number of GNSS satellites to provide a better

service performance and improving the multi-constellation

environment by the interoperability, i.e. the inter-operation

of different GNSS satellites simultaneously.

Fig. 1 shows GNSS environment as of 2020 according to

the user’s viewpoint, in which the light red shading part

refers to the section that the intra-system interference effect

starts to become larger than the noise floor. The goal is to

have about 120 satellites in space and more than 90 visible

satellites in open sky by 2020. This will definitely bring more

improved interoperability but may cause a serious intra-

system interference between systems. That is, as the number

of satellites increases according to the multi-constellation

(the horizontal axis in Fig. 1), dilution of precision (DOP),

which represents a theoretical position error according to

the geometric arrangement between satellite and receiver,

Fig. 1.  GNSS Environment in 2020 from user point of view (Ebner 2014).

Jin-Su Han & Jong-Hoon Won Result GNSS Software Receiver Using API 3

http://www.ipnt.or.kr

is reduced whereas the intra-system interference effect

becomes large. As shown in Fig. 1, the interference effect

(equivalent interference) becomes larger than the noise

floor when the number of satellites is around 70, resulting

in performance degradation. Numerically, the operation of

more than three GNSSs is critically difficult from the user’s

viewpoint when processing all GNSS signals, but users have

no significant advantages in contrast (Ebner 2014).

3. SX3 GNSS SOFTWARE RECEIVER

3.1 SX3 Setup

Fig. 2 shows the components of hardware and software

in the SX3 GNSS software receiver from IFEN GmbH in

Germany. The SX3 frontend can process all GNSS signals

inside the L-band and S-band, and programming can be

done by connecting it to a host computer through the USB

3.0. As shown in Fig. 2a, the SX3 frontend used in this paper

is a single RF version, which consists of single RF-In where

antennas can be connected (dual RF version consists of

two RF-Ins.), and four out of five RF bands are supported as

shown in Fig. 2b. The standard RF bandwidth in the RF path

(RF band 1 to 4 and S-band) is 50 MHz (IFEN GmbH 2016).

The SX3 supports real-time and post-processing

mode. Fig. 2c shows the experiment set connection, and

the SX3 hardware consists of antenna, RF-frontend, and

connected PC. The SX3 software receiver can process IF

data. Accordingly, it provides a convenient measurement

that is needed to the algorithm development by supporting

play-back using the post-processing mode. Fig. 2d shows

the capture of UI provided by SX3. The UI of SX3 supports

real-time and post-processing function, through which

environments of reception and monitoring of GNSS signals

and execution of developed algorithms are provided

according to GNSS type. In addition, SX3 provides a dynamic

link library (DLL) file (.dll) execution environment written

by C or C++ that can be developed through the API. A user

can set up necessary input and output in real time through

the property located in the left side of the UI. If the input and

output that are preferred by users are located in the same

UI of the channel measurements that indicate the satellite

characteristics, the input and output can be processed by

programming through the API. For the execution of the API,

whether DLL algorithm in the API is executed or not is set in

the UI property. Once it is set, the execution results can be

monitored through the corresponding UI. Thus, users can

develop an algorithm of real-time and post-processing mode

in C and C++ environment through various functions of SX3

Fig. 2.  (a): Front panel of the SX3 frontend housing (single RF version), (b): SX3 frontend frequency plan overview, (c): SX3 Test set-up, (d): Running to SX3
GNSS receiver.exe (IFEN GmbH 2016).

(a)

(c)

(b)

(d)

4 JPNT 8(1), 1-12 (2019)

https://doi.org/10.11003/JPNT.2019.8.1.1

and execute the algorithm after changing the completed

algorithm into DLL file (.dll) format through the UI’s

property. In this manner, users can effectively reduce the

effort and time to develop the real-time receiver algorithm.

3.2 SX3 API Program

The SX3 GNSS software receiver provides API according to

the signal processing step of GNSS. The processing procedure

is shown in Fig. 3, and the descriptions on the individual APIs

are presented in Table 1. Processing can be done step by

step according to the processing structure of the receiver. If

processing is not set, default setting is run.

Since the purpose of this paper is to implement the

navigation unit, Fig. 3 deals with the API name and data:

navigation API, and position, velocity, and time (PVT)

solutions are designed and accessed in the possible

application. The definitions of the functions in the API

are presented in Table 2. In Table 2, the functions in the

navigation step are three: InitNavigationApi for initialization,

processRawMeasurements that processes the input

measurement in earnest, and closeNavigationApi which is

run when the navigation step is complete. Through these, the

navigation unit can be implemented using the inputs which

Fig. 3.  Accessible data and possible application for the IF Sample API, the baseband API and
the navigation API (IFEN GmbH 2016).

Table 1.  Application programing interface overview (IFEN GmbH 2016).

Number Name Description
1 IF sample API Gives access to the IF samples, which allows displaying, storing and analyzing the samples.

Furthermore one may modify the IF samples (for interference mitigation, signal band
limiting etc.).

2 Baseband API Allows to control signal acquisition and tracking within the SX3 software receiver.
3 Navigation API Provides raw measurements which may be used to implement own PVT solutions or

GNSS/INS integration schemes.
4 Assisted API Offers an interface for extracting and providing navigation data bits.
5 Sensor API Allows the retrieval of sensor data captured by the SX3 software receiver.
6 Utility API Gives access to several software receiver internal parameters and functions. The data

transfer gateway is located within this API as well.

Table 2.  API function (IFEN GmbH 2016).

Number API Name Init Worker Closing
1 IF sample initIfSampleApi processSamples closeIfSampleApi
2 Baseband initAcquisitionApi

initTrackingApi
acquire
track

closeAcquisitionApi
closeTrackingApi

3 Navigation initNavigationApi processRawMeasurement closeNavigation
4 Assisted initAssistedApi exportAssistanceData closeAssistedApi
5 Sensor initSensorApi processSensorData closeSensorApi

Jin-Su Han & Jong-Hoon Won Result GNSS Software Receiver Using API 5

http://www.ipnt.or.kr

will be available at the navigation step.

3.3 Execution process of SX3 API

Fig. 4 shows the execution process of the functions in the

API briefly. In the SX3 API, which is based on C and C++,

provided interfaces and functions are defined according to

each of the procedures. The navigation unit is implemented

using the navigation API. The navigation unit consists of

functions that provide three functions: initNavigationApi,

processRawMeasurements, and closeNavigationApi through

the navigation API. The DLL files (.dll) are generated

through a debugger and then called from the SX3 GNSS

software receiver file. Then, SX3 performs the task as written

in the API. The initialization process initNavigationApi is

activated as soon as the API starts, and various variables

and outputs can be set up prior to executing the remaining

procedures in initNavigationApi. After the initialization is

complete via initNavigationApi, processRawMeasurements

function that can utilize various navigation data and

printSwRwText are iteratively activated and executed

before the closeNavigationApi is activated. The user’s

algorithm can be applied using various data received from

the processRawMeasurements function. And, its result can

be outputted to the status window of SX3 execution file

using the printSwRwText function. The closeNavigationApi

function is activated after all executions are complete. This

function is convenient for error control due to iterations

through memory management for the next output prior to

termination. The above API’s functions and variables are

defined in the provided header file (*.h).

4. NON-LINEAR LEAST SQUARE
ESTIMATION

The final goal of implementing the navigation unit is

positioning. The positioning process in this paper uses

the NLSE. The NLSE can estimate PVT solutions of the

receiver using pseudorange measurements and positions

of multiple visible satellites with simple implementations,

which is conducted using the equation for pseudorange

measurements. When the number of visible satellites is N, the

k-th (k=1, 2, …, N) satellite’s pseudorange ρk can be expressed

as presented in Eq. (1) (Misra & Enge 2011).

	

which is run when the navigation step is complete. Through these, the navigation unit can be implemented
using the inputs which will be available at the navigation step.

3.3 Execution process of SX3 API

Fig. 4 shows the execution process of the functions in the API briefly. In the SX3 API, which is based
on C and C++, provided interfaces and functions are defined according to each of the procedures. The
navigation unit is implemented using the navigation API. The navigation unit consists of functions that
provide three functions: initNavigationApi, processRawMeasurements, and closeNavigationApi through
the navigation API. The DLL files (.dll) are generated through a debugger and then called from the SX3
GNSS software receiver file. Then, SX3 performs the task as written in the API. The initialization process
initNavigationApi is activated as soon as the API starts, and various variables and outputs can be set up
prior to executing the remaining procedures in initNavigationApi. After the initialization is complete via
initNavigationApi, processRawMeasurements function that can utilize various navigation data and
printSwRwText are iteratively activated and executed before the closeNavigationApi is activated. The
user’s algorithm can be applied using various data received from the processRawMeasurements function.
And, its result can be outputted to the status window of SX3 execution file using the printSwRwText
function. The closeNavigationApi function is activated after all executions are complete. This function is
convenient for error control due to iterations through memory management for the next output prior to
termination. The above API’s functions and variables are defined in the provided header file (*.h).

4. NON-LINEAR LEAST SQUARE ESTIMATION

The final goal of implementing the navigation unit is positioning. The positioning process in this
paper uses the NLSE. The NLSE can estimate PVT solutions of the receiver using pseudorange
measurements and positions of multiple visible satellites with simple implementations, which is
conducted using the equation for pseudorange measurements. When the number of visible satellites is N,
the -th () satellite’s pseudorange can be expressed as presented in Eq. (1) (Misra &
Enge 2011).

 √() () () ()

where, () and () are the k-th satellite position and user (or receiver) location in the earth-
centered earth-fixed coordinate system. In addition, represents the equivalent clock bias and refers to
the unknown error due to many combined errors (combined effect of the residual errors). Thus, if the
value to be estimated is set to the state vector , the measurement equation () with
respect to Eq. (1) can be written as Eq. (2).

 () √() () () ()

Here, when the measurement vector that has pseudorange measurement values is
inputted at an arbitrary measurement time from the receiver, measurement residual vector and Jacobian
vector are expressed as the following Eqs. (3) and (4), respectively (Mendel 1995).

 (̂) ()

� (1)

where, (xk, yk, zk) and (x, y, z) are the k-th satellite position and

user (or receiver) location in the earth-centered earth-fixed

coordinate system. In addition, b represents the equivalent

clock bias and εk refers to the unknown error due to many

combined errors (combined effect of the residual errors).

Thus, if the value to be estimated is set to the state vector θ_ = [x,

y, z, b]T, the measurement equation hk(θ_) with respect to Eq.

(1) can be written as Eq. (2).

	

which is run when the navigation step is complete. Through these, the navigation unit can be implemented
using the inputs which will be available at the navigation step.

3.3 Execution process of SX3 API

Fig. 4 shows the execution process of the functions in the API briefly. In the SX3 API, which is based
on C and C++, provided interfaces and functions are defined according to each of the procedures. The
navigation unit is implemented using the navigation API. The navigation unit consists of functions that
provide three functions: initNavigationApi, processRawMeasurements, and closeNavigationApi through
the navigation API. The DLL files (.dll) are generated through a debugger and then called from the SX3
GNSS software receiver file. Then, SX3 performs the task as written in the API. The initialization process
initNavigationApi is activated as soon as the API starts, and various variables and outputs can be set up
prior to executing the remaining procedures in initNavigationApi. After the initialization is complete via
initNavigationApi, processRawMeasurements function that can utilize various navigation data and
printSwRwText are iteratively activated and executed before the closeNavigationApi is activated. The
user’s algorithm can be applied using various data received from the processRawMeasurements function.
And, its result can be outputted to the status window of SX3 execution file using the printSwRwText
function. The closeNavigationApi function is activated after all executions are complete. This function is
convenient for error control due to iterations through memory management for the next output prior to
termination. The above API’s functions and variables are defined in the provided header file (*.h).

4. NON-LINEAR LEAST SQUARE ESTIMATION

The final goal of implementing the navigation unit is positioning. The positioning process in this
paper uses the NLSE. The NLSE can estimate PVT solutions of the receiver using pseudorange
measurements and positions of multiple visible satellites with simple implementations, which is
conducted using the equation for pseudorange measurements. When the number of visible satellites is N,
the -th () satellite’s pseudorange can be expressed as presented in Eq. (1) (Misra &
Enge 2011).

 √() () () ()

where, () and () are the k-th satellite position and user (or receiver) location in the earth-
centered earth-fixed coordinate system. In addition, represents the equivalent clock bias and refers to
the unknown error due to many combined errors (combined effect of the residual errors). Thus, if the
value to be estimated is set to the state vector , the measurement equation () with
respect to Eq. (1) can be written as Eq. (2).

 () √() () () ()

Here, when the measurement vector that has pseudorange measurement values is
inputted at an arbitrary measurement time from the receiver, measurement residual vector and Jacobian
vector are expressed as the following Eqs. (3) and (4), respectively (Mendel 1995).

 (̂) ()

� (2)

Here, when the measurement vector Z = [z1, z2, …, zN]T that

has N pseudorange measurement values is inputted at an

arbitrary measurement time from the receiver, measurement

residual vector e_ and Jacobian vector H are expressed as the

following Eqs. (3) and (4), respectively (Mendel 1995).

Fig. 4.  Function sequence for SX3 API function “processRawMeasurement” (IFEN GmbH 2016).

6 JPNT 8(1), 1-12 (2019)

https://doi.org/10.11003/JPNT.2019.8.1.1

	

which is run when the navigation step is complete. Through these, the navigation unit can be implemented
using the inputs which will be available at the navigation step.

3.3 Execution process of SX3 API

Fig. 4 shows the execution process of the functions in the API briefly. In the SX3 API, which is based
on C and C++, provided interfaces and functions are defined according to each of the procedures. The
navigation unit is implemented using the navigation API. The navigation unit consists of functions that
provide three functions: initNavigationApi, processRawMeasurements, and closeNavigationApi through
the navigation API. The DLL files (.dll) are generated through a debugger and then called from the SX3
GNSS software receiver file. Then, SX3 performs the task as written in the API. The initialization process
initNavigationApi is activated as soon as the API starts, and various variables and outputs can be set up
prior to executing the remaining procedures in initNavigationApi. After the initialization is complete via
initNavigationApi, processRawMeasurements function that can utilize various navigation data and
printSwRwText are iteratively activated and executed before the closeNavigationApi is activated. The
user’s algorithm can be applied using various data received from the processRawMeasurements function.
And, its result can be outputted to the status window of SX3 execution file using the printSwRwText
function. The closeNavigationApi function is activated after all executions are complete. This function is
convenient for error control due to iterations through memory management for the next output prior to
termination. The above API’s functions and variables are defined in the provided header file (*.h).

4. NON-LINEAR LEAST SQUARE ESTIMATION

The final goal of implementing the navigation unit is positioning. The positioning process in this
paper uses the NLSE. The NLSE can estimate PVT solutions of the receiver using pseudorange
measurements and positions of multiple visible satellites with simple implementations, which is
conducted using the equation for pseudorange measurements. When the number of visible satellites is N,
the -th () satellite’s pseudorange can be expressed as presented in Eq. (1) (Misra &
Enge 2011).

 √() () () ()

where, () and () are the k-th satellite position and user (or receiver) location in the earth-
centered earth-fixed coordinate system. In addition, represents the equivalent clock bias and refers to
the unknown error due to many combined errors (combined effect of the residual errors). Thus, if the
value to be estimated is set to the state vector , the measurement equation () with
respect to Eq. (1) can be written as Eq. (2).

 () √() () () ()

Here, when the measurement vector that has pseudorange measurement values is
inputted at an arbitrary measurement time from the receiver, measurement residual vector and Jacobian
vector are expressed as the following Eqs. (3) and (4), respectively (Mendel 1995).

 (̂) () � (3)

	

[

]

 ()

where, ̂ is the estimated state vector, and (̂) (̂) (̂) (̂) represents the vector that
enumerates the substitution results of estimated value into the measurement equation. Since it is non-
linear with regard to , it can be calculated using a numerical method, e.g. the Gauss iterative method.
After setting the initial value ̂ , the calculation of Eq. (7) is performed recursively. Here the state
vector’s estimated value is ̂ ̂ ̂ , which is the final estimate value.

 ̂ ̂

 ()
 Note that,

 ̂ | ̂ ̂

 ̂ ((̂))|

 ̂ ̂

 ̂ (̂)| ̂ ̂

‖ ̂ ̂ ‖ ()

where, the subscript refers to the -th () iteration, and the increment is set to a sufficiently
low value. And, is the weight of each measurement, which can be configured using value that is
related to the reception environment in this paper.

5. MEASUREMENT RESULTS

5.1 Description of the Written Program CODE

The SX3 API provides convenience for users who only perform program coding by selecting
hardware variables such as antenna-power from the UI option and writing algorithms with C and C++,
compared to existing hardware receivers. These study results are the outcomes of the implementation
using the SX3 software receiver’s API conducted for about 30 days by one designer. The NLSE algorithm
code was written by C and C++ using the API provided within the SX3 software receiver, and DLL files
(.dll) were generated, which were then executed in the UI of the receiver operated in real time. The
written code is executed in the UI and the results are monitored at the same time. The monitored results
are stored as a text file format (.txt). In this study, the results are analyzed based on the configuration of
the written code, developed contents, and measurement results stored as a text file format.

The receiver position is estimated through the NLSE process using the data inputted from the
receiver. During this process, there are some problems to be solved. The procedure was summarized in
the form of the pseudo codes in the Appendices. All channel measurements introduced to the receiver
through the API were received as values and processed thereby implementing the navigation unit by
writing the source code that performed positioning through the NLSE procedure. The source code in the
navigation unit was designed as it was generalized to enable processing of universal GNSS measurements.
Thus, it was designed to have a flexible structure that can reconfigure specific GNSS and frequency
receivers by adjusting the setting of the external configuration file.

Fig. 5 shows the program running screen of GNSS software receiver based on the designed API. The
measurement data received from the antenna are monitored in real time and multi-constellation GNSS
positioning results are monitored in detail at the same time. The integrity of all data outputted during the
execution is checked and the data are stored as a text file (*.text) format. All data outputted in the

� (4)

where, θ̂ is the estimated state vector, and h_(θ̂_) = [h1(θ̂_),

h1(θ̂_), …, hN(θ̂_)]T represents the vector that enumerates the

substitution results of estimated value into the measurement

equation. Since it is non-linear with regard to θ_ , it can be

calculated using a numerical method, e.g. the Gauss iterative

method. After setting the initial value θ̂_0, the calculation of Eq.

(7) is performed recursively. Here the state vector’s estimated

value is θ̂_ = θ̂_ i+1 ≅ θ̂_ i, which is the final estimate value.

	

[

]

 ()

where, ̂ is the estimated state vector, and (̂) (̂) (̂) (̂) represents the vector that
enumerates the substitution results of estimated value into the measurement equation. Since it is non-
linear with regard to , it can be calculated using a numerical method, e.g. the Gauss iterative method.
After setting the initial value ̂ , the calculation of Eq. (7) is performed recursively. Here the state
vector’s estimated value is ̂ ̂ ̂ , which is the final estimate value.

 ̂ ̂

 ()
 Note that,

 ̂ | ̂ ̂

 ̂ ((̂))|

 ̂ ̂

 ̂ (̂)| ̂ ̂

‖ ̂ ̂ ‖ ()

where, the subscript refers to the -th () iteration, and the increment is set to a sufficiently
low value. And, is the weight of each measurement, which can be configured using value that is
related to the reception environment in this paper.

5. MEASUREMENT RESULTS

5.1 Description of the Written Program CODE

The SX3 API provides convenience for users who only perform program coding by selecting
hardware variables such as antenna-power from the UI option and writing algorithms with C and C++,
compared to existing hardware receivers. These study results are the outcomes of the implementation
using the SX3 software receiver’s API conducted for about 30 days by one designer. The NLSE algorithm
code was written by C and C++ using the API provided within the SX3 software receiver, and DLL files
(.dll) were generated, which were then executed in the UI of the receiver operated in real time. The
written code is executed in the UI and the results are monitored at the same time. The monitored results
are stored as a text file format (.txt). In this study, the results are analyzed based on the configuration of
the written code, developed contents, and measurement results stored as a text file format.

The receiver position is estimated through the NLSE process using the data inputted from the
receiver. During this process, there are some problems to be solved. The procedure was summarized in
the form of the pseudo codes in the Appendices. All channel measurements introduced to the receiver
through the API were received as values and processed thereby implementing the navigation unit by
writing the source code that performed positioning through the NLSE procedure. The source code in the
navigation unit was designed as it was generalized to enable processing of universal GNSS measurements.
Thus, it was designed to have a flexible structure that can reconfigure specific GNSS and frequency
receivers by adjusting the setting of the external configuration file.

Fig. 5 shows the program running screen of GNSS software receiver based on the designed API. The
measurement data received from the antenna are monitored in real time and multi-constellation GNSS
positioning results are monitored in detail at the same time. The integrity of all data outputted during the
execution is checked and the data are stored as a text file (*.text) format. All data outputted in the

� (7)

	

	
	

[

]

 ()

where, ̂ is the estimated state vector, and (̂) (̂) (̂) (̂) represents the vector that
enumerates the substitution results of estimated value into the measurement equation. Since it is non-
linear with regard to , it can be calculated using a numerical method, e.g. the Gauss iterative method.
After setting the initial value ̂ , the calculation of Eq. (7) is performed recursively. Here the state
vector’s estimated value is ̂ ̂ ̂ , which is the final estimate value.

 ̂ ̂

 ()
 Note that,

 ̂ | ̂ ̂

 ̂ ((̂))|

 ̂ ̂

 ̂ (̂)| ̂ ̂

‖ ̂ ̂ ‖ ()

where, the subscript refers to the -th () iteration, and the increment is set to a sufficiently
low value. And, is the weight of each measurement, which can be configured using value that is
related to the reception environment in this paper.

5. MEASUREMENT RESULTS

5.1 Description of the Written Program CODE

The SX3 API provides convenience for users who only perform program coding by selecting
hardware variables such as antenna-power from the UI option and writing algorithms with C and C++,
compared to existing hardware receivers. These study results are the outcomes of the implementation
using the SX3 software receiver’s API conducted for about 30 days by one designer. The NLSE algorithm
code was written by C and C++ using the API provided within the SX3 software receiver, and DLL files
(.dll) were generated, which were then executed in the UI of the receiver operated in real time. The
written code is executed in the UI and the results are monitored at the same time. The monitored results
are stored as a text file format (.txt). In this study, the results are analyzed based on the configuration of
the written code, developed contents, and measurement results stored as a text file format.

The receiver position is estimated through the NLSE process using the data inputted from the
receiver. During this process, there are some problems to be solved. The procedure was summarized in
the form of the pseudo codes in the Appendices. All channel measurements introduced to the receiver
through the API were received as values and processed thereby implementing the navigation unit by
writing the source code that performed positioning through the NLSE procedure. The source code in the
navigation unit was designed as it was generalized to enable processing of universal GNSS measurements.
Thus, it was designed to have a flexible structure that can reconfigure specific GNSS and frequency
receivers by adjusting the setting of the external configuration file.

Fig. 5 shows the program running screen of GNSS software receiver based on the designed API. The
measurement data received from the antenna are monitored in real time and multi-constellation GNSS
positioning results are monitored in detail at the same time. The integrity of all data outputted during the
execution is checked and the data are stored as a text file (*.text) format. All data outputted in the

[

]

 ()

where, ̂ is the estimated state vector, and (̂) (̂) (̂) (̂) represents the vector that
enumerates the substitution results of estimated value into the measurement equation. Since it is non-
linear with regard to , it can be calculated using a numerical method, e.g. the Gauss iterative method.
After setting the initial value ̂ , the calculation of Eq. (7) is performed recursively. Here the state
vector’s estimated value is ̂ ̂ ̂ , which is the final estimate value.

 ̂ ̂

 ()
 Note that,

 ̂ | ̂ ̂

 ̂ ((̂))|

 ̂ ̂

 ̂ (̂)| ̂ ̂

‖ ̂ ̂ ‖ ()

where, the subscript refers to the -th () iteration, and the increment is set to a sufficiently
low value. And, is the weight of each measurement, which can be configured using value that is
related to the reception environment in this paper.

5. MEASUREMENT RESULTS

5.1 Description of the Written Program CODE

The SX3 API provides convenience for users who only perform program coding by selecting
hardware variables such as antenna-power from the UI option and writing algorithms with C and C++,
compared to existing hardware receivers. These study results are the outcomes of the implementation
using the SX3 software receiver’s API conducted for about 30 days by one designer. The NLSE algorithm
code was written by C and C++ using the API provided within the SX3 software receiver, and DLL files
(.dll) were generated, which were then executed in the UI of the receiver operated in real time. The
written code is executed in the UI and the results are monitored at the same time. The monitored results
are stored as a text file format (.txt). In this study, the results are analyzed based on the configuration of
the written code, developed contents, and measurement results stored as a text file format.

The receiver position is estimated through the NLSE process using the data inputted from the
receiver. During this process, there are some problems to be solved. The procedure was summarized in
the form of the pseudo codes in the Appendices. All channel measurements introduced to the receiver
through the API were received as values and processed thereby implementing the navigation unit by
writing the source code that performed positioning through the NLSE procedure. The source code in the
navigation unit was designed as it was generalized to enable processing of universal GNSS measurements.
Thus, it was designed to have a flexible structure that can reconfigure specific GNSS and frequency
receivers by adjusting the setting of the external configuration file.

Fig. 5 shows the program running screen of GNSS software receiver based on the designed API. The
measurement data received from the antenna are monitored in real time and multi-constellation GNSS
positioning results are monitored in detail at the same time. The integrity of all data outputted during the
execution is checked and the data are stored as a text file (*.text) format. All data outputted in the

[

]

 ()

where, ̂ is the estimated state vector, and (̂) (̂) (̂) (̂) represents the vector that
enumerates the substitution results of estimated value into the measurement equation. Since it is non-
linear with regard to , it can be calculated using a numerical method, e.g. the Gauss iterative method.
After setting the initial value ̂ , the calculation of Eq. (7) is performed recursively. Here the state
vector’s estimated value is ̂ ̂ ̂ , which is the final estimate value.

 ̂ ̂

 ()
 Note that,

 ̂ | ̂ ̂

 ̂ ((̂))|

 ̂ ̂

 ̂ (̂)| ̂ ̂

‖ ̂ ̂ ‖ ()

where, the subscript refers to the -th () iteration, and the increment is set to a sufficiently
low value. And, is the weight of each measurement, which can be configured using value that is
related to the reception environment in this paper.

5. MEASUREMENT RESULTS

5.1 Description of the Written Program CODE

The SX3 API provides convenience for users who only perform program coding by selecting
hardware variables such as antenna-power from the UI option and writing algorithms with C and C++,
compared to existing hardware receivers. These study results are the outcomes of the implementation
using the SX3 software receiver’s API conducted for about 30 days by one designer. The NLSE algorithm
code was written by C and C++ using the API provided within the SX3 software receiver, and DLL files
(.dll) were generated, which were then executed in the UI of the receiver operated in real time. The
written code is executed in the UI and the results are monitored at the same time. The monitored results
are stored as a text file format (.txt). In this study, the results are analyzed based on the configuration of
the written code, developed contents, and measurement results stored as a text file format.

The receiver position is estimated through the NLSE process using the data inputted from the
receiver. During this process, there are some problems to be solved. The procedure was summarized in
the form of the pseudo codes in the Appendices. All channel measurements introduced to the receiver
through the API were received as values and processed thereby implementing the navigation unit by
writing the source code that performed positioning through the NLSE procedure. The source code in the
navigation unit was designed as it was generalized to enable processing of universal GNSS measurements.
Thus, it was designed to have a flexible structure that can reconfigure specific GNSS and frequency
receivers by adjusting the setting of the external configuration file.

Fig. 5 shows the program running screen of GNSS software receiver based on the designed API. The
measurement data received from the antenna are monitored in real time and multi-constellation GNSS
positioning results are monitored in detail at the same time. The integrity of all data outputted during the
execution is checked and the data are stored as a text file (*.text) format. All data outputted in the

�

(8)

where, the subscript i refers to the i-th (i = 1, 2, …) iteration,

and the increment δ is set to a sufficiently low value. And, W

is the weight of each measurement, which can be configured

using C/N0 value that is related to the reception environment

in this paper.

5. MEASUREMENT RESULTS

5.1 Description of the Written Program CODE

The SX3 API provides convenience for users who only

perform program coding by selecting hardware variables such

as antenna-power from the UI option and writing algorithms

with C and C++, compared to existing hardware receivers.

These study results are the outcomes of the implementation

using the SX3 software receiver’s API conducted for about

30 days by one designer. The NLSE algorithm code was

written by C and C++ using the API provided within the SX3

software receiver, and DLL files (.dll) were generated, which

were then executed in the UI of the receiver operated in real

time. The written code is executed in the UI and the results

are monitored at the same time. The monitored results are

stored as a text file format (.txt). In this study, the results are

analyzed based on the configuration of the written code,

developed contents, and measurement results stored as a text

file format.

The receiver position is estimated through the NLSE

process using the data inputted from the receiver. During

this process, there are some problems to be solved. The

procedure was summarized in the form of the pseudo codes

in the Appendices. All channel measurements introduced

to the receiver through the API were received as values and

processed thereby implementing the navigation unit by

writing the source code that performed positioning through

Fig. 5.  Real-time operation the designed API-based GNSS software receiver program.

Jin-Su Han & Jong-Hoon Won Result GNSS Software Receiver Using API 7

http://www.ipnt.or.kr

the NLSE procedure. The source code in the navigation unit

was designed as it was generalized to enable processing of

universal GNSS measurements. Thus, it was designed to have

a flexible structure that can reconfigure specific GNSS and

frequency receivers by adjusting the setting of the external

configuration file.

Fig. 5 shows the program running screen of GNSS software

receiver based on the designed API. The measurement data

received from the antenna are monitored in real time and

multi-constellation GNSS positioning results are monitored

in detail at the same time. The integrity of all data outputted

during the execution is checked and the data are stored as

a text file (*.text) format. All data outputted in the execution

screen can be processed with a file format, and signals fed

into the receiver can be processed individually to calculate a

position solution. There were two problems when obtaining

the PVT solution from the signals. First, whether the received

data is reliable or not had to be determined. This reliability

check function using the single point positioning (SPP)

residual during the processing procedure was provided

by the SPP flag in SX3. The SPP flag returns OK (without

problem) or Raw (sufficient signal is not received) after the

range check on each of the satellites. Since all GNSSs had

quite more OK returns of SPP flag than Raw, it was designed

to receive data whose SPP flag was OK as an input during the

NLSE operation as much as possible. Second, the ambiguity

problem occurred when signals were received. If GNSS

signals had nearly similar directions with one another, it

caused a problem in the inverse matrix process during the

NLSE process that calculated the position solution. This

serious problem occurred during the processing procedure

by the API. This refers to a case when matrix equation H

for NLSE is close to zero due to satellites whose direction

is similar around the receiver during the data processing

procedure. A method that reduced the direction ambiguity

was adopted by processing H matrix. To solve the above

two problems, signals were processed. During this process,

GNSS signals were designed to be excluded in case unreliable

signals were received and in case signals caused the

ambiguity problem. In this way, more reliable signals were

used although the API did not utilize input signals in all

GNSSs.

5.2 Measurement Results

The measurement experiments were conducted for 20

min. through antennas installed in the rooftop of Hightech

Center building at Inha University as shown in Fig. 6. Each of

the satellite signals were processed individually to produce

a file form output. The processing results of all signals of

GPS L1 C/A, GPS L2 P(Y), Galileo E1, GLONASS L1 C/A, and

BeiDou B1 were displayed. The positioning results using

the API and SX3 were compared and analyzed with the data

captured in the measurement campaign. The results are

shown in Figs. 7-9, and presented in Table 3. Table 3 briefly

presents the positioning errors. Fig. 7 shows the positioning

results including the SX3’s navigation solutions according

to all GNSS satellites of GPS L1 C/A, GPS L2 P(Y), Galileo E1,

GLONASS L1 C/A, and BeiDou B1 using two-dimensional

scatter plots, in which yellow point refers to the SX3 position

and blue refers to the mean of the position solutions of the

SX3. Fig. 8 shows the sky plot that shows each of the satellites

around the receiver. Fig. 9 shows the position error of each

satellite, GDOP, and satellite’s visibility over time.

The mean of GDOP in Table 3 quantifies the distribution

characteristics of the satellites according to five types of

satellite signals. As stated, the analysis was very convenient

using various variables in the API of GNSS software receiver,

which produced the measurement experiment results about

the program that was described in the above. Overall, the

performance results using the API were lower than that of

Fig. 6.  Fig. 6. Mapping experiment position using Google Earth. GNSS
antenna on the roof top of the engineering building at Inha University
(Latitude: 37.45053046˚, Longitude: 126.65743787˚, Altitude: 106.217 [m],
Date: 18 May 2018, Time: 17:19:01 ~ 18:49:25 (about 90 minute)).

Table 3.  Position solution errors.

API SX3
GPS L1 C/A GPS L2 P(Y) Galileo E1 GLONASS L1 C/A Beirou B1 All GNSS Receiver solution (All GNSS)

Mean of horizontal error [m]
Mean of vertical error [m]
Mean of position error [m]
Mean of GDOP [m]
Mean of visibility

0.83
5.27
5.35
2.99
10

6.51
10.45
12.39
3.00
9.9

4.00
0.08

21.57
5.90
4.5

3.92
2.91
7.02
2.45
7.7

6.31
7.44

10.03
4.99

8

5.37
11.13
12.73
1.24
30

1.95
4.48
5.01

8 JPNT 8(1), 1-12 (2019)

https://doi.org/10.11003/JPNT.2019.8.1.1

Fig. 7.  Position result of API program. scale: ±20 [m].

(a)

(c)

(e)

(b)

(d)

(f)

Jin-Su Han & Jong-Hoon Won Result GNSS Software Receiver Using API 9

http://www.ipnt.or.kr

Fig. 8.  Sky plot of API program.

(a)

(c)

(e)

(b)

(d)

(f)

10 JPNT 8(1), 1-12 (2019)

https://doi.org/10.11003/JPNT.2019.8.1.1

SX3. In addition, the position error of the GPS using the API

was the lowest as 5.35 m. The horizontal errors of the GPS

and GLONASS were relatively low because the satellites were

arranged at various angles around the receiver.

In Fig. 7, the navigation results of each system exhibited a

level of few meter error, but the trend of the variance differed

according to each satellite. The GPS L1 C/A in Fig. 7a and

GPS L2 P(Y) in Fig.7b show that the GPS had a small variance

of error, but the mean positions of the two signals differed,

which were due to the difference in the data reflected by

the SPP flag, the criterion that determined whether signals

were reliable. Since the satellites of GLONASS L1 C/A in Fig.

7d was distributed in a multi-direction compared to those

of Galileo E1 in Fig. 7c, the variance was smaller than that

of Galileo E1. The satellites of BeiDou B1 in Fig. 7e were

displayed in many positions which were quite far away from

the mean position. It meant the increase in variance. Fig. 7f

shows the integration of all signals of GPS L1 C/A, GPS L2

P(Y), Galileo E1, GLONASS L1 C/A, and BeiDou B1, which

was derived from the results that reflected the means and

error characteristics of five types of satellite signals.

The precision of the navigation solution is related with

the satellite arrangement. The sky plots of GPS L1 C/A in

Fig. 8a and GPS L2 P(Y) in Fig. 8b verified that the satellite

arrangement was distributed evenly at various angles overall.

In contrast, the satellites of Galileo E1 in Fig. 8c were arranged

only in the north direction, which diminished the precision of

the navigation solution. Some satellites of GLONASS L1 C/A

in Fig. 8d and BeiDou B1 in Fig. 8e were arranged in the south

but their numbers were smaller than those arranged in the

north. Thus, the variance range was larger than that of GPS

L1 C/A.

The GPS revealed a relatively lower error rate than that

of GLONASS, which was due to the higher visibility of the

GPS than that of GLONASS based on the current satellites

floating in space orbit. When analyzing Galileo with only

average data in Table 3, relatively low horizontal and vertical

errors were exhibited. However, as shown in Figs. 9a and

b, its error rate and GDOP were high overall, which meant

that the deviation of the value was large. This was due to

the low satellite visibility caused by the delay of the Galileo

program development, which could not secure the sufficient

number of satellites currently. The visibility of all GNSS

was 30, which was the highest, and the GDOP was 1.24 m

accordingly, which was the lowest. This concluded that the

value’s deviation was very small. Although the position error

was relatively high, all GNSS had relatively higher robustness

than that of any other single GNSS due to the visibility of

the largest number of satellites. The above study results

verified that the reasonable outcomes on multi-frequency Fig. 9.  Result of API program.

(a)

(b)

(c)

Jin-Su Han & Jong-Hoon Won Result GNSS Software Receiver Using API 11

http://www.ipnt.or.kr

and multi-constellation GNSSs could be derived through

the analysis on measurement results within a short period of

implementation time as 30 days with two researchers, which

proved the reduction of research effort via the API.

6. CONCLUSIONS

The API of the GNSS software receiver is the architecture

with a f lexible structure. This paper was aimed at

implementing the navigation unit using the API. It

implemented a multi-frequency and multi-constellation

GNSS receiver with small research efforts within a short

period of time. It also presented the measurement results in

Korea regions. The performance evaluation was concluded

that the accuracy of the system implemented with the API

was relatively lower than that of SX3. Nonetheless, the multi-

frequency and multi-constellation GNSS required a great

study efforts due to the drawback that was difficult to handle

flexibly although it was more robust than single GNSS.

To overcome this, this study proposed a flexible method

through the API platform. Our implementation showed

that the cost and time required to develop GNSS receivers

could be dramatically reduced. As described in the above,

the flexibility of the API platform can be a great benefit in

terms of a convenient analysis as well as a convenience of

performance upgrade of the system and scalability of the

integrated receiver.

ACKNOWLEDGEMENT

This research was supported by the Space Core

Technology Development Program of the National Research

Foundation (NRF) funded by the Ministry of Science & ICT, S.

Korea (No. NRF-2017M1A3A3A02016715)

AUTHOR CONTRIBUTIONS

Han, J.S. and Won, J.H. contributed to the design and

implementation of the research, to the analysis of the results

and to the writing of the manuscript.

“Conceptualization, Han, J.S and Won, J.H.; Methodology,

Han, J.S; Software, Han, J.S; Validation: Han, J.S; Formal

analysis, Han, J.S. and Won, J.H.; Investigation: Han, J.S;

Resources: Han, J.S and Won, J.H.; Data curation, Han, J.S.;

Writing-original draft Preparation: Han, J.S.; Writing-review

and editing: Han, J.S. and Won, J.H.; Visualization, Han, J.S.;

Supervision, Won, J.H.; Project administration, Won, J.H.;

Funding Acqusition, Won, J.H.;

REFERENCES

Anghileri, M., Pany, T., Guixens, D. S., Won, J. H., Ayaz,

A. S., et al. 2007, Performance Evaluation of a Multi-

frequency GPS/Galileo/SBAS Software Receiver,

Proceedings of the 20th ION GNSS International

Technical Meeting of the Satellite Division, Sep 25-28,

2007, Fort Worth, TX, pp.2749-2761

Abbasian, N. S. & Petovello, M. G. 2008, Multichannel Dual

Frequency GLONASS Software Receiver, Proceedings of

the 21st ION GNSS International Technical Meeting of

the Satellite Division, Sep 16-19, 2008, Savannah, GA,

pp.1719-1729

Chen, Y. H. & Juang, J. C. 2007, A GNSS Software Receiver

Approach for the Processing of Intermittent Data,

Proceedings of the 20th ION GNSS International

Technical Meeting of the Satellite Division, Sep 25-28,

2007, Fort Worth, TX, pp.2772-2777

Ebner, H. 2014, European GNSS evolution, EU Global

Navigation Satellite System (GNSS) Research and

Technology, HR2020 Stakeholder Consultation

Workshop, Brussels, 4 Jun 2014

Heinrichs, G., Restle, M., Dreischer, C., & Pany, T. 2007, NavX -

NSR- A Novel Galileo/GPS Navigation Software Receiver,

Proceedings of the 20th ION GNSS International Technical

Meeting of the Satellite Division, Sep 25-28, 2007, Fort

Worth, TX, pp.1329-1334

IFEN GmbH 2016, SX3 Navigation Software Receiver, User

Manual version 3.2 (Poing, Germany: IFEN GmbH)

Mattos, P. G. & Pisoni, F. 2013, Quad Constellation Receiver

- GPS, GLONASS, Galileo, BeiDou, Proceedings of the

26th ION GNSS International Technical Meeting of the

ION Satellite Division, Sep 16-20, 2013, Nashville, TN,

pp.176-181

Misra, P. & Enge, P. 2011, Global Positioning System:

Signals, Measurements, and Performance, 2nd ed.

(Massachusetts: Ganga-Jamuna Press)

Mendel, J. M. 1995, Lessons in Estimation Theory for Signal

Processing, Communications, and Control, 1st ed. (New

Jersey: Prentice-Hall International, Inc.)

Wu, C., Qian, Y., Cui, X., & Lu, M. 2009, The Optimized

Method and Algorithms in the CPU&GPU-Based

GNSS Software Receiver, Proceedings of the 22nd ION

GNSS International Technical Meeting of the Satellite

Division, Sep 22-25, 2009, Savannah, GA, pp,339-343

12 JPNT 8(1), 1-12 (2019)

https://doi.org/10.11003/JPNT.2019.8.1.1

APPENDICES

1. Pseudo code: NLSE

Algorithm NLSE

Input: �Initial Position, H matrix, Pseudorange,

 Signal Power, Tropo Error, Iono Error, Clock Error,

 GPS Time

Output: Estimation Position

Estimation_Position = Initial_Position

Estimation_Position = Initial_Position

While delta < 10^-5

	 e = Pseudorange – H_matrix * Initial_Position

	 G = �inv(H_matrix_transposed * Weighting * H_matrix)

 // inv function : Inverse matrix.

	 delta = G * H_matrix_transposed * W * e

	 Estimation_Position = Estimation_Position – delta

EndWhile

Return Estimation_Position

2. Pseudo code: API Program

Algorithm Processing Channel Measurement Data

Input: �Satellite Position, Pseudorange, Signal Power,

 Tropo Error, Iono Error, Clock Error, GPS Time

Output: Position (Infinite loop)

While 1

	 IF First_Process Then

		 Initial_Position = �function Initial_Position

 (Satellite_Position)

	 IF SPP OK Then

		 n = The_Number_of_data

		 H_matrix[4][n] = {Satellite_Position_array(X,Y,Z,1)}

		 H_matrix = function Integrity_check(H_matrix)

		 Estimation_Position = �function NLSE

 (�Initial_Position, H_matrix,

Pseudorange, Signal_Power,

Tropo_Error, Iono_Error,

Clock_Error, GPS_Time)

		 Initial_Position = Estimation_Position

	 EndIF

EndWhile

Jin-Su Han received the B.S. degree from

Inha University, Korea, in 2017. He is

currently in the M.S. degree course in

Department of Electrical Engineering at Inha

University, Korea. His research interests

include software receiver and INS/DR.

Jong-Hoon Won received the ph.D.degree in

the Department of Control Engineering from

Ajou University, Korea, in 2005. After then,

he had worked with the Institute of Space

Application at University Federal Armed

Forces (UFAF) Munich, Germany. He was

nominated as Head of GNSS Laboratory in 2011 at the same

institute, and involved in lectures on advanced receiver

technology at Technical University of Munich (TUM) since

2009. He is currently an assistant professor of the Department

of Electrical Engineering at Inha University. His research

interests include GNSS signal design, receiver, navigation,

target tracking systems and self-driving cars.

