JPNT 8(1), 1-12 (2019)
https://doi.org/10.11003/JPNT.2019.8.1.1

Journal of Positioning,
]I) N T Navigation, and Timing

Implementation and Experimental Test Result of a Multi-frequency and
Multi-constellation GNSS Software Receiver Using Commercial API

Jin—Su Han, Jong—Hoon Won'

Department of Electrical Engineering, Inha University, Incheon 22212, Korea

ABSTRACT

In this paper, we implement a navigation software of a Global Navigation Satellite System (GNSS) receiver based on a

commercial purpose GNSS software receiver platform and verify its performance by performing experimental tests for

various GNSS signals available in Korea region. The SX3, employed in this paper, is composed of an application program

and a Radio Frequency (RF) frontend, and can capture and process multi-constellation and multi-frequency GNSS signals.

All the signal processing procedure of SX3 is accessible by the receiver software designer. In particular for an easy research

and development, the Application Programing Interface (API) of the SX3 has a flexible architecture to upgrade or change the

existing software program, equipped with a real-time monitoring function to monitor all the API executions. Users can easily

apply and experiment with the developed algorithms using a form of Dynamic Link Library (DLL) files. Thus, by utilizing this

flexible architecture, the cost and effort to develop a GNSS receiver can be greatly reduced.

Keywords: GNSS software receiver, multi-constellation and multi-frequency GNSS, API, navigation unit

1. INTRODUCTION

Currently, global navigation satellite system (GNSS)
receivers are applied to various applications such as ground,
aviation, and maritime. As of the early 2000s when only
the global positioning system (GPS) in the USA and Global
Navigation Satellite System (GLONASS) in Russia were present,
the mainstream of implementing receivers was the use of
single GPS signals or combined signals of GPS and GLONASS.
With the research and development by space power nations,
new GNSSs such as Galileo in Europe and BeiDou in China
were placed in the outer space so various GNSS satellites are
now transmitting signals toward the ground. A large number
of satellites to run GNSSs such as GPS, Galileo, GLONASS, and

Received Nov 19, 2018 Revised Feb 14, 2019 Accepted Feb 20, 2019
fCorresponding Author

E-mail: jh.won@inha.ac.kr
Tel: +82-32-860-7406 Fax: +82-32-863-5852

Jin-Su Han https://orcid.org/0000-0002-4204-5077
Jong-Hoon Won https://orcid.org/0000-0001-5258-574X

Copyright © The Institute of Positioning, Navigation, and Timing

BeiDou are orbiting around the earth, and the aim is set to
have around 120 satellites in space and more than 90 satellites
visible in open sky by 2020 (Ebner 2014).

Thus, the multi-constellation GNSS receiver technology
used by receiving multiple GNSS signals have been widely
studied from the early 2010s in pace with the system
development speed in each country. That is, as the hardware
development time of receivers is rapidly shortened, receivers
can now be operated using a multi-constellation GNSS
method that can process GPS and GLONASS as well as
multiple GNSSs such as Galileo and BeiDou (Mattos &
Pisoni 2013). However, existing hardware receivers had
drawbacks that cannot change the design values according
to the changing environment time to time. On the other
hand, a large number of design values in GNSS software
receivers can be parameterized and changeable according to
different applications. Due to this, GNSS software receivers
provide highly efficient and convenient methods in terms of
cost effectiveness when collecting and tracking new GNSS
signals and facilitate easy modifications as well (Abbasian
& Petovello 2008). As a result of such advantages, the
performance of receiver system can be upgraded easily and

http://www.ipnt.orkr Print ISSN: 2288-8187 Online ISSN: 2289-0866

2 JPNT 8(1), 1-12 (2019)

the receiver system can be expanded to an integrated receiver
of GPS, Galileo, GLONASS, and BeiDou based on the basic
architecture of GPS L1 CA code receiver.

In the meantime, research and development on GNSS
software receivers based on universal software radio platform
mounted with commercial radio frequency (RF) and
additional processing unit have been conducted in recent
years (Anghileri et al. 2007). For the development of GNSS
receivers, prior developments on overall receiver systems
covering communication and navigation technologies such
as RF unit, correlator, and navigation unit should be carried
out first. The GNSS software receiver requires highly complex
and complicate calculation in the real-time mode, and the
intermittent data problem is another issue that disturbs real-
time processing of the receiver. In general, filtering, down-
conversion, and analog-to-digital conversion are conducted
with GNSS signals in a GNSS software receiver, which starts
at the radio frequency frontend (RF-frontend). The converted
digital intermediate frequency (IF) signal data stream is
transferred to the main processing unit for de-spreading,
tracking, and positioning tasks, where the signal buffer is
used to collect digitalized IF data and transfer them to the
personal computer (PC) (Chen & Juang 2007).

In summary, a new challenge has emerged in the design
of GNSS receivers with the emergence of various and new
GNSSs and changes in demand by receiver users. The GNSS
software receivers have more advantages than existing GNSS
receivers. One of the advantages in GNSS software receiver
is to re-design and test a new algorithm by users (Wu et al.
2009). In addition, the GNSS software receiver has an ability
to access all steps in the internal signal processing chain
that is in general not possible for existing hardware-based
receivers. This can be useful to research and development
on satellite navigation systems. For this purpose, the
GNSS software receiver provides a flexible application
programming interface (API) that can add, replace, or extend
the functions of the receiver thereby reducing the effort of
advanced receiver designers and the development cost and
duration, significantly (Heinrichs et. al. 2007).

In this paper, a navigation unit is implemented by using the
SX3 API, which is a GNSS software receiver for professional
uses and commercially available in the market. Positioning
using the least square estimation in each of GPS L1 C/A,
GPS L2 P(Y), Galileo E1, GLONASS L1 C/A, and BeiDou B1
is conducted. Furthermore, positioning is conducted using
the multi-constellation GNSSs by combining five GNSSs. By
implementing the navigation unit using GNSS software API
in the above process, this paper proposes a development
method that can prove the reduction in development cost
and time dramatically within a short period of research effort.

https://doi.org/10.11003/JPNT.2019.8.1.1

i Galileo Galileo Galileo Galileo
Galileo e eps e s
GLONASS GLONASS GLONASS
GINS
2 40 60 80 100 120 140 201
T T T TR —
I 1 |
i : ‘ I -
I, on ;\lllU(l' receiver i } sy :
& | s | £
H | e g 203 £
’E\ I /,// I Noise Floor Nn‘ 1 é
a 32 ! J £
= ~ ' ! 204 =
- ~ I I =
H . : : / |
£ : £
= I \:\,\Eam Z
a >] ' |
i | 2 i {206
1 < 1 I T £
e 7 ! Do o059 | | : |
74 | HDOF (95%) | 1 |
L] 1 L i 1 L .
o 40 60 80 100 120 140 el

Number of satellites

Fig. 1. GNSS Environment in 2020 from user point of view (Ebner 2014).

This paper is organized as follows: in Chapter 2, the
hardware configuration of SX3 GNSS receiver and software
graphical user interface are described and the structure of
the APIis explained. In Chapter 3, the non-linear least square
estimation (NLSE) is introduced as one of the methods that
obtains the positioning results. In Chapter 4, The NLSE
algorithm is applied to the API to obtain the positioning
results and the results are outputted and analyzed. Then, the
effects of the positioning development method using GNSS
software API and the direction that is applicable to the future
research are presented.

2. MULTI-CONSTELLATION
ENVIRONMENT

The multi-constellation environment significantly
influences the reception performance of GPS receivers.
Currently, a large number of GNSS satellites from several
countries are orbiting around the earth. Those nations are
increasing the number of GNSS satellites to provide a better
service performance and improving the multi-constellation
environment by the interoperability, i.e. the inter-operation
of different GNSS satellites simultaneously.

Fig. 1 shows GNSS environment as of 2020 according to
the user’s viewpoint, in which the light red shading part
refers to the section that the intra-system interference effect
starts to become larger than the noise floor. The goal is to
have about 120 satellites in space and more than 90 visible
satellites in open sky by 2020. This will definitely bring more
improved interoperability but may cause a serious intra-
system interference between systems. That is, as the number
of satellites increases according to the multi-constellation
(the horizontal axis in Fig. 1), dilution of precision (DOP),
which represents a theoretical position error according to
the geometric arrangement between satellite and receiver,

Jin

-Su Han & Jong-Hoon Won Result GNSS Software Receiver Using API 3

RF-Band 1

|

E1 I

=

u |

[cronass

[BeiDou |

e SX3

=

IOCON B EC ST RFIn

i : |
- T s

75 2

a1/
o5z 20557

2sas26737 250120267

0 106 o
Zis0us63 15580352 15784001
s 83634259 S 766817 s -s08975...|s 121421 s 2281,
sez 180576 sz 91 <205
006 015 2 018 008 02
3 - A 7 . , . & 2 o %

aso10s620 243980881

S 1302354.. § 210296,

a1
0

Ba0ain -
s-10165.
mase et
o2

[-

18770431
s -1

w0 e o

©

Mesages (cquiiton and Tracking)

(©)]

Fig. 2. (a): Front panel of the SX3 frontend housing (single RF version), (b): SX3 frontend frequency plan overview, (c): SX3 Test set-up, (d): Running to SX3

GNSS receiver.exe (IFEN GmbH 2016).

is reduced whereas the intra-system interference effect
becomes large. As shown in Fig. 1, the interference effect
(equivalent interference) becomes larger than the noise
floor when the number of satellites is around 70, resulting
in performance degradation. Numerically, the operation of
more than three GNSSs is critically difficult from the user’s
viewpoint when processing all GNSS signals, but users have
no significant advantages in contrast (Ebner 2014).

3. SX3 GNSS SOFTWARE RECEIVER

3.1 SX3 Setup

Fig. 2 shows the components of hardware and software
in the SX3 GNSS software receiver from IFEN GmbH in
Germany. The SX3 frontend can process all GNSS signals
inside the L-band and S-band, and programming can be
done by connecting it to a host computer through the USB
3.0. As shown in Fig. 2a, the SX3 frontend used in this paper
is a single RF version, which consists of single RF-In where
antennas can be connected (dual RF version consists of
two RF-Ins.), and four out of five RF bands are supported as
shown in Fig. 2b. The standard RF bandwidth in the RF path
(RF band 1 to 4 and S-band) is 50 MHz (IFEN GmbH 2016).

The SX3 supports real-time and post-processing
mode. Fig. 2c shows the experiment set connection, and
the SX3 hardware consists of antenna, RF-frontend, and
connected PC. The SX3 software receiver can process IF
data. Accordingly, it provides a convenient measurement
that is needed to the algorithm development by supporting
play-back using the post-processing mode. Fig. 2d shows
the capture of UI provided by SX3. The UI of SX3 supports
real-time and post-processing function, through which
environments of reception and monitoring of GNSS signals
and execution of developed algorithms are provided
according to GNSS type. In addition, SX3 provides a dynamic
link library (DLL) file (.dll) execution environment written
by C or C++ that can be developed through the API. A user
can set up necessary input and output in real time through
the property located in the left side of the UL If the input and
output that are preferred by users are located in the same
UI of the channel measurements that indicate the satellite
characteristics, the input and output can be processed by
programming through the API. For the execution of the API,
whether DLL algorithm in the API is executed or not is set in
the UI property. Once it is set, the execution results can be
monitored through the corresponding UI. Thus, users can
develop an algorithm of real-time and post-processing mode
in C and C++ environment through various functions of SX3

http://www.ipnt.or.kr

4 JPNT 8(1), 1-12 (2019)

RF Frontend

/

Correlator

Loop

Receiver
Processing

Navigation
Processing

Abstraction of the

IF Sample API

Data Stream

IF Samples:
Data Information

Digital Filter
Interference Detection
Interference Mitigation
Interference Simulation
Own DSP Algorithms

4 Baseband API

Channel Parameters:
Receiver Time

I and Q Correlation Values
Doppler

Code Discriminator
Frequency Discriminator
Phase Discriminator

Own Acquisition Algorithm
Own Tracking Algerithm
Signal Monitor Algerithm

————— Navigation API

Receiver Observations:
Pseudorange
Carrier phase
Navigation Data
Position

APl name and data

Own PVT Solution
Measurement Data Output
Dead Reackening

Possible applications

receiver processing

Fig. 3. Accessible data and possible application for the IF Sample AP, the baseband APl and

the navigation API (IFEN GmbH 2016).

Table 1. Application programing interface overview (IFEN GmbH 2016).

Number Name

Description

1 IF sample API

Gives access to the IF samples, which allows displaying, storing and analyzing the samples.

Furthermore one may modify the IF samples (for interference mitigation, signal band

limiting etc.).

2 Baseband API Allows to control signal acquisition and tracking within the SX3 software receiver.
3 Navigation API Provides raw measurements which may be used to implement own PVT solutions or

GNSS/INS integration schemes.

Offers an interface for extracting and providing navigation data bits.

Allows the retrieval of sensor data captured by the SX3 software receiver.

Gives access to several software receiver internal parameters and functions. The data

Assisted API
5 Sensor API
6 Utility API

transfer gateway is located within this API as well.

Table 2. APIfunction (IFEN GmbH 2016).

Number APIName Init Worker Closing
1 IF sample initlfSampleApi processSamples closelfSampleApi
2 Baseband initAcquisitionApi acquire closeAcquisitionApi
initTrackingApi track closeTrackingApi
3 Navigation initNavigationApi processRawMeasurement closeNavigation
4 Assisted initAssistedApi exportAssistanceData closeAssistedApi
5 Sensor initSensorApi processSensorData closeSensorApi

and execute the algorithm after changing the completed
algorithm into DLL file (.dll) format through the UI's
property. In this manner, users can effectively reduce the
effort and time to develop the real-time receiver algorithm.

3.2 SX3 API Program

The SX3 GNSS software receiver provides API according to
the signal processing step of GNSS. The processing procedure
is shown in Fig. 3, and the descriptions on the individual APIs
are presented in Table 1. Processing can be done step by
step according to the processing structure of the receiver. If

https://doi.org/10.11003/JPNT.2019.8.1.1

processing is not set, default setting is run.

Since the purpose of this paper is to implement the
navigation unit, Fig. 3 deals with the API name and data:
navigation API, and position, velocity, and time (PVT)
solutions are designed and accessed in the possible
application. The definitions of the functions in the API
are presented in Table 2. In Table 2, the functions in the
navigation step are three: InitNavigationApi for initialization,
processRawMeasurements that processes the input
measurement in earnest, and closeNavigationApi which is
run when the navigation step is complete. Through these, the
navigation unit can be implemented using the inputs which

Jin-Su Han & Jong-Hoon Won Result GNSS Software Receiver Using API 5

Source code using SX3 API function based on C or C++

initNavigationAPI0

processRawMeasurements()

|

closeNavigationAPI()

= DLL file(.dll)

InitNavigationAPI(
processRawMeasurement()
processRawMeasurementr)

printSwRxText
processRawMeasurement()

printSwRxText

processRawMeasurement()
processRawMeasurement()
closeNavigationAPI(

SX3 GNSS Receiver

Run time

Fig. 4. Function sequence for SX3 API function “processRawMeasurement” (IFEN GmbH 2016).

will be available at the navigation step.

3.3 Execution process of SX3 API

Fig. 4 shows the execution process of the functions in the
API briefly. In the SX3 API, which is based on C and C++,
provided interfaces and functions are defined according to
each of the procedures. The navigation unit is implemented
using the navigation API. The navigation unit consists of
functions that provide three functions: initNavigationApi,
processRawMeasurements, and closeNavigationApi through
the navigation API. The DLL files (.dll) are generated
through a debugger and then called from the SX3 GNSS
software receiver file. Then, SX3 performs the task as written
in the API. The initialization process initNavigationApi is
activated as soon as the API starts, and various variables
and outputs can be set up prior to executing the remaining
procedures in initNavigationApi. After the initialization is
complete via initNavigationApi, processRawMeasurements
function that can utilize various navigation data and
printSwRwText are iteratively activated and executed
before the closeNavigationApi is activated. The user’s
algorithm can be applied using various data received from
the processRawMeasurements function. And, its result can
be outputted to the status window of SX3 execution file
using the printSwRwText function. The closeNavigationApi
function is activated after all executions are complete. This
function is convenient for error control due to iterations
through memory management for the next output prior to
termination. The above API's functions and variables are
defined in the provided header file (*.h).

4. NON-LINEAR LEAST SQUARE
ESTIMATION

The final goal of implementing the navigation unit is
positioning. The positioning process in this paper uses
the NLSE. The NLSE can estimate PVT solutions of the
receiver using pseudorange measurements and positions
of multiple visible satellites with simple implementations,
which is conducted using the equation for pseudorange
measurements. When the number of visible satellites is N, the
k-th (k=1, 2, ..., N) satellite’s pseudorange p, can be expressed
as presented in Eq. (1) (Misra & Enge 2011).

pk=J(xk—x)z+(yk—y>2+(zk—z)2+b+sk (1

where, (x;, ¥, z) and (x, y, z) are the k-th satellite position and
user (or receiver) location in the earth-centered earth-fixed
coordinate system. In addition, b represents the equivalent
clock bias and ¢, refers to the unknown error due to many
combined errors (combined effect of the residual errors).
Thus, if the value to be estimated is set to the state vector 0 =[x,
9, z, b]", the measurement equation 4,(6) with respect to Eq.
(1) can be written as Eq. (2).

hi(6) = J(xk -0+, -+ @ -2 +b (2

z,]" that
has N pseudorange measurement values is inputted at an

Here, when the measurement vector Z = [z,, z,, ...,
arbitrary measurement time from the receiver, measurement

residual vector e and Jacobian vector H are expressed as the
following Egs. (3) and (4), respectively (Mendel 1995).

http://www.ipnt.or.kr

6 JPNT 8(1), 1-12 (2019)

Havtiodule ‘UserNavigationAPIl® active

Low in

for §75.000 ms in this epoch.
buffer size

is 101 messages

* 00021107€
s
s

17180361 036€32

2 5 22748080. 114686 0. 165408
1 5 23138515 3€493€ 45.55136€0 =
11 5 23954€34.558574 45158863
23 5 25111244.170450 42.3038€1
1L 4 23346433.432543 50.98612¢ -1024
4 26478897.309148 50.1€5304 11848137.037867 1703727356872
4 25271€26.345459 45_408496€ =20184545.550521 1818€818.875.
260328€5.313505 45_173515 -11082472_81€€27 24211262
24026103242 £3.036035 -2€355¢5. 061430 7388187

w0

2 14454448 8¢

€73.5€0775 45.274440
3045048.405713 45.15073¢

0€2.0€5443 141€5364.518733 21954535.§9€051 -0.00016L 2
75€.727€35 7531161.002017 1€813418.810213

003204

€17004 22814748

-22157728.103780 5118787.07 so;s 87535955
e32

20 -4504€85_17 fssa
735 2553€627.141087 356551.585137 -0.000000 5.€12114 0.000000

747726 0.000000
-0.000075 2.9238€4 O
5 -0.000485 3.551381
000352 4.4€8443 0.9
0.000€40 2.9€9297 0.
24 -0.000100 4.147501 0.0C
5.18€310 0.000¢

o€ 03"

1 02€7 3.302595 0. o:woo
34.€30911 0.0001€4 5.01776S 0.
un-.u: 414779 0.000015 5.4€€300 0 :omo)

-101€

255.898544 44.347155 5284€57.
-8158527. 99|
2 E

2 © 36818957.54295€ 49.409248
1 8 37534078.989453 47_2€9635
10 8 3815007€.5€1742 4€.018825

T N A A
amen

s
5
8
s
B
B
8
8 500
s
2
2
2
2
2

PRy

nue e

ooooo
©

131878 39.24€430

a0ssa0€s -24374407.2]

% Print input data:
1. Real-time channel measurement monitoring
2. Checking satellite integrity and saving text file(*.txt)

Receiver position: -3026843.38781€ 40€7125.422815 3857274.318250

All GNSS initial:
ALL GNSS est:
Visibility: 28

-3026836.
-3028836.

304347
3€01€7

4067113
40€7113.

065274
115254

3257273
3257273,

261882
3ee€30

GPS L1 C/A inivial:
GPS Ll C/A est:
Visibility: 9

-3026841.
-3026841.

794547
928257

40€7121.423452
40€7121.497423

3857277
3857277.

717508
905537

2€844.
26844

054€07
246517

4067175
4067175

0422€9
181433

3857273
=72

Galileo E1 initial: - 935737

Galileo E1 est: =

0.

o.

0.

202424 0

000811

000811

000811

20033]

Visibility: 4

GLONASS initial:
GLONASS est:
Visibilizy: 7

-3026845
-3026845

€81850
548219

40€7125.4%
40€7125.27

Beidou Bl initial:
Beidou Bl est:
$ Visibility: 8

-3026944.
-3026844

046392
293450

10e7128
4067128

.93
37

% Print output data:
1. Realtime GNSS navigation solution monitoring
2. Checking result integrity and saving text file(*.txt)

Fig. 5. Real-time operation the designed API-based GNSS software receiver program.

e=7Z-h® @)
der ey Qe dey
ax ay dz ab
9e; ez de; dep
H=]| ox ady adz ab (4)
l"ﬂ den den 6eNJ
dx oy a0z ab

where, 0 is the estimated state vector, and h(é) = [hl(é),
hy(0),
substitution results of estimated value into the measurement

. hN(é)]T represents the vector that enumerates the

equation. Since it is non-linear with regard to 9, it can be
calculated using a numerical method, e.g. the Gauss iterative
method. After setting the initial value QO, the calculation of Eq.
(7) is performed recursively. Here the state vector’s estimated
value is é = ém = Qi, which is the final estimate value.

()

(8)

where, the subscript i refers to the i-th (i = 1, 2, ...) iteration,
and the increment § is set to a sufficiently low value. And, W
is the weight of each measurement, which can be configured
using C/N, value that is related to the reception environment

in this paper.

https://doi.org/10.11003/JPNT.2019.8.1.1

5. MEASUREMENT RESULTS

5.1 Description of the Written Program CODE

The SX3 API provides convenience for users who only
perform program coding by selecting hardware variables such
as antenna-power from the UI option and writing algorithms
with C and C++, compared to existing hardware receivers.
These study results are the outcomes of the implementation
using the SX3 software receiver’s API conducted for about
30 days by one designer. The NLSE algorithm code was
written by C and C++ using the API provided within the SX3
software receiver, and DLL files (.dll) were generated, which
were then executed in the UI of the receiver operated in real
time. The written code is executed in the UI and the results
are monitored at the same time. The monitored results are
stored as a text file format (.txt). In this study, the results are
analyzed based on the configuration of the written code,
developed contents, and measurement results stored as a text
file format.

The receiver position is estimated through the NLSE
process using the data inputted from the receiver. During
this process, there are some problems to be solved. The
procedure was summarized in the form of the pseudo codes
in the Appendices. All channel measurements introduced
to the receiver through the API were received as values and
processed thereby implementing the navigation unit by
writing the source code that performed positioning through

the NLSE procedure. The source code in the navigation unit
was designed as it was generalized to enable processing of
universal GNSS measurements. Thus, it was designed to have
a flexible structure that can reconfigure specific GNSS and
frequency receivers by adjusting the setting of the external
configuration file.

Fig. 5 shows the program running screen of GNSS software
receiver based on the designed API. The measurement data
received from the antenna are monitored in real time and
multi-constellation GNSS positioning results are monitored
in detail at the same time. The integrity of all data outputted
during the execution is checked and the data are stored as
a text file (*.text) format. All data outputted in the execution
screen can be processed with a file format, and signals fed
into the receiver can be processed individually to calculate a
position solution. There were two problems when obtaining
the PVT solution from the signals. First, whether the received
data is reliable or not had to be determined. This reliability
check function using the single point positioning (SPP)
residual during the processing procedure was provided
by the SPP flag in SX3. The SPP flag returns OK (without
problem) or Raw (sufficient signal is not received) after the
range check on each of the satellites. Since all GNSSs had
quite more OK returns of SPP flag than Raw, it was designed
to receive data whose SPP flag was OK as an input during the
NLSE operation as much as possible. Second, the ambiguity
problem occurred when signals were received. If GNSS
signals had nearly similar directions with one another, it
caused a problem in the inverse matrix process during the
NLSE process that calculated the position solution. This
serious problem occurred during the processing procedure
by the API. This refers to a case when matrix equation H
for NLSE is close to zero due to satellites whose direction
is similar around the receiver during the data processing
procedure. A method that reduced the direction ambiguity
was adopted by processing H matrix. To solve the above
two problems, signals were processed. During this process,
GNSS signals were designed to be excluded in case unreliable
signals were received and in case signals caused the
ambiguity problem. In this way, more reliable signals were
used although the API did not utilize input signals in all
GNSSs.

Table 3. Position solution errors.

Jin-

Su Han & Jong-Hoon Won Result GNSS Software Receiver Using API 7

Faa. GoogldlEarth

Fig. 6. Fig. 6. Mapping experiment position using Google Earth. GNSS
antenna on the roof top of the engineering building at Inha University
(Latitude: 37.45053046°, Longitude: 126.65743787°, Altitude: 106.217 [m],
Date: 18 May 2018, Time: 17:19:01 ~ 18:49:25 (about 90 minute)).

5.2 Measurement Results

The measurement experiments were conducted for 20
min. through antennas installed in the rooftop of Hightech
Center building at Inha University as shown in Fig. 6. Each of
the satellite signals were processed individually to produce
a file form output. The processing results of all signals of
GPS L1 C/A, GPS L2 P(Y), Galileo E1, GLONASS L1 C/A, and
BeiDou B1 were displayed. The positioning results using
the API and SX3 were compared and analyzed with the data
captured in the measurement campaign. The results are
shown in Figs. 7-9, and presented in Table 3. Table 3 briefly
presents the positioning errors. Fig. 7 shows the positioning
results including the SX3’s navigation solutions according
to all GNSS satellites of GPS L1 C/A, GPS L2 P(Y), Galileo E1,
GLONASS L1 C/A, and BeiDou B1 using two-dimensional
scatter plots, in which yellow point refers to the SX3 position
and blue refers to the mean of the position solutions of the
SX3. Fig. 8 shows the sky plot that shows each of the satellites
around the receiver. Fig. 9 shows the position error of each
satellite, GDOP, and satellite’s visibility over time.

The mean of GDOP in Table 3 quantifies the distribution
characteristics of the satellites according to five types of
satellite signals. As stated, the analysis was very convenient
using various variables in the API of GNSS software receiver,
which produced the measurement experiment results about
the program that was described in the above. Overall, the
performance results using the API were lower than that of

API §X3
GPSL1C/A GPSL2P(Y) GalileoEl GLONASSL1C/A BeirouBl AIIGNSS Receiver solution (All GNSS)
Mean of horizontal error [m] 0.83 6.51 4.00 3.92 6.31 5.37 1.95
Mean of vertical error [m] 5.27 10.45 0.08 2.91 7.44 11.13 4.48
Mean of position error [m] 5.35 12.39 21.57 7.02 10.03 12.73 5.01
Mean of GDOP [m] 2,99 3.00 5.90 245 4.99 1.24
Mean of visibility 10 9.9 4.5 7.7 8 30

http://www.ipnt.or.kr

8 JPNT 8(1), 1-12 (2019)

15 1
107} 1
5t]
E E
£ o ﬁqe 1 £
Z Z
I s]
-5
-107 1
& API Position
H SX3 Position]
-15
9|(— mean APl Position
9|(— mean SX3 Position
=20 ; : g ; 5 ; p
=20 -15 10 -5 o 5 10 15 20
East[m]
@
20 T T T T T T T
L
157} ‘ 1
' 4
10 1
5t]
E E
= =
= 07 1 =
[=] * =]
= =
51 1
107 1
& API Position
H SX3 Position]
-15
9{(— mean APl Position .
¥ mean SX3 Position "
=20 : ; :] g ;
20 -15 -10 -5 0 5 10 15 20
East[m]
©
15 1
10 1
5t g 1
E . E
= L j =
€ 0 Lo TN]
S * £
= =
5F ’ g
107 1
@ APl Position
H SX3 Position 4
-15
* mean APl Position
¥ mean SX3 Position
20 : T : A L A A
=200 15 -10 -5 0 5 10 15 20

East[m]
(€

Fig. 7. Position result of APl program. scale: 20 [m].

https://doi.org/10.1

1003/JPNT.2019.8.1.1

157
10F
5t
L
ot
P
L]
5
-10 7
® API Paosition
15 1 SX3 Position
* mean APl Position
9|6 mean SX3 Position
-20 : ; : g ; ; :
20 15 10 -5 0 5 10 15
East[m]
(b)
157
107}
5t
ol *
.
5t
107
& AP| Position
H S5X3 Position
-15
-*— mean APl Position
¥ mean SX3 Position
20 : : : . L L .
20 15 10 -5 o 5 10 15
East[m]
(d
20 - - - - - - -
157
107}
5t
or Q
*
5t
-107¢
® API Position
15 1 SX3 Position
mean API Position &
9|$ mean SX3 Position
-20 : : : . : : 3
=20 15 10 -5 0 5 10 15
East[m]
(f)

Fig. 8. Sky plot of APl program.

(e)

® PRN:1
® PRN:3
PRN: 6
® PRN:7
® PRN:8
® PRN: 11
® PRN: 17
PRN: 18
® PRN: 19
© PRN: 22
® PFRN: 23
w & PRN:28
® PRN: 30
-~
_ = Mean of GDOP: 2.990 [m]
S
@)
N ® PRN:2
s ® PRN:4
i - W PRN: 5
N N
P . ® PRN:Q
s 1 N ® PRN: 30
. T N
;f P -~ “ . \\
A ,/ \ A
/ ~—T \
! ! vl N\ \' \
i i / ! |
L L N L |
w ! - : - - - E
| 1 \ 90 Jfb:l Bo J:D
\ \ \ / / !
\ \ ~ ! /
3 \ e £ /
i1 \ s ;
\ ~ 5 ’
N » - e y
\ ~—- P
N i
b -
~ -
g _ = Mean of GDOP: 5.904 [m]
S
(]
N ® PRN:1
e ® PRN:2
= ~ o ® PRN:3
- N ® PRN:4
Z et 5 N ® PRN:7
e = A :
/ e R \ ® PRN:8
/ Wi 1Y \ PRN: 10
/ y o @ l o A PRN: 13
! / i N A
/ ! ,/ N ! \
! / [£y A |
L L ' 1 |
w ! - - - - - E
| 1 \ 20 } Jfb:l Bo J:D
\ \ \ / / !
\ \ X ! /
\ \ I ! /
\ \ s /
\ ~ o ’
hY o - e i
N =~ P
N ’
» s
~ -
S = Mean of GDOP: 4.985 [m]

Jin-Su Han & Jong-Hoon Won Result GNSS Software Receiver Using APl 9

=
L]

PRN: 1
PRN: 3
PRN: 6
PRN: 7
PRN: &
PRN: 11
PRMN: 17
PRM: 18
® PRN:19
PRMN: 22
PRMN: 23
PRN: 28
® PRN: 30

L B]

-~
i _ = Mean of GDOP: 2.9895 [m]

—
—_ -

(b)

PRN: -1016
PRN: -2009
PRN: -3018
PRN: -4002
PRN: -7010
PRN: 2020
PRN: 3019
PRN: 4017
PRMN: 5003
PRN: 6004

-~
™~ _ =~ Mean of GDOP: 2.451 [m]

d

8 o OPSLICA
e &GPS L2 P(Y)
Beidou B1
Galileo E1
® GLONASSL1C/A

\\\
N
N

N
N

/Mea’n/of GDOP: 1.236 [m]

()

http://www.ipnt.or.kr

10 JPNT 8(1), 1-12 (2019)

60 T T T T T T T
All GNSS
Beidou B1
50 F Galileo E1 4
GLONASS L1CA
GPS L2 P(Y)
= GPS L1CA |
£
2
@
= 30 7
i=l
@
c
20 1
! 'ﬂt“/"‘wvr ; s A
A el
10 .—@' g | “n'{ﬂ’.”w"‘\h-r i @ I:'.D‘_.wf %.\;‘N
1
[""I el - ,r.ﬁﬂﬂ-w /,‘,.i
0 L h L ! ! L d
4.62 4.625 4.63 4.635 464 4.645 4.65 4.655
GPS time [s] x10%
(@
10 T T T T T T T
All GNSS
9 H Beidou B1 4
Galileo E1
aH GLONASS L1CA J
GPS L1CA
7H——GPsS P(Y) |
— 6 g
E
5 st Sl e
)
RS |
3 B 1 - N J—__ _ J T
__L R B 8] s oo 2
=]
GO e O e
11— b
0 L L L L L . L
4.62 4.625 4.63 4.635 464 4.645 4.65 4.655
GPS time [s] x10%
(b)
35 T T T T T T T

25 L All GNSS ol
Beidou B1
Galileo E1
=20+ GLONASS L1CA |
E GPS L2 P(Y}
@ -GPS L1CA
= 151 1
100 7
— 1§

0)))))))
462 4625 463 4635 464 4645 465 4655
GPS time [s] «10%

(©

Fig. 9. Result of API program.

https://doi.org/10.11003/JPNT.2019.8.1.1

S$X3. In addition, the position error of the GPS using the API
was the lowest as 5.35 m. The horizontal errors of the GPS
and GLONASS were relatively low because the satellites were
arranged at various angles around the receiver.

In Fig. 7, the navigation results of each system exhibited a
level of few meter error, but the trend of the variance differed
according to each satellite. The GPS L1 C/A in Fig. 7a and
GPS L2 P(Y) in Fig.7b show that the GPS had a small variance
of error, but the mean positions of the two signals differed,
which were due to the difference in the data reflected by
the SPP flag, the criterion that determined whether signals
were reliable. Since the satellites of GLONASS L1 C/A in Fig.
7d was distributed in a multi-direction compared to those
of Galileo El in Fig. 7c, the variance was smaller than that
of Galileo E1. The satellites of BeiDou B1 in Fig. 7e were
displayed in many positions which were quite far away from
the mean position. It meant the increase in variance. Fig. 7f
shows the integration of all signals of GPS L1 C/A, GPS L2
P(Y), Galileo E1, GLONASS L1 C/A, and BeiDou B1, which
was derived from the results that reflected the means and
error characteristics of five types of satellite signals.

The precision of the navigation solution is related with
the satellite arrangement. The sky plots of GPS L1 C/A in
Fig. 8a and GPS L2 P(Y) in Fig. 8b verified that the satellite
arrangement was distributed evenly at various angles overall.
In contrast, the satellites of Galileo E1 in Fig. 8c were arranged
only in the north direction, which diminished the precision of
the navigation solution. Some satellites of GLONASS L1 C/A
in Fig. 8d and BeiDou B1 in Fig. 8e were arranged in the south
but their numbers were smaller than those arranged in the
north. Thus, the variance range was larger than that of GPS
L1 C/A.

The GPS revealed a relatively lower error rate than that
of GLONASS, which was due to the higher visibility of the
GPS than that of GLONASS based on the current satellites
floating in space orbit. When analyzing Galileo with only
average data in Table 3, relatively low horizontal and vertical
errors were exhibited. However, as shown in Figs. 9a and
b, its error rate and GDOP were high overall, which meant
that the deviation of the value was large. This was due to
the low satellite visibility caused by the delay of the Galileo
program development, which could not secure the sufficient
number of satellites currently. The visibility of all GNSS
was 30, which was the highest, and the GDOP was 1.24 m
accordingly, which was the lowest. This concluded that the
value’s deviation was very small. Although the position error
was relatively high, all GNSS had relatively higher robustness
than that of any other single GNSS due to the visibility of
the largest number of satellites. The above study results
verified that the reasonable outcomes on multi-frequency

and multi-constellation GNSSs could be derived through
the analysis on measurement results within a short period of
implementation time as 30 days with two researchers, which
proved the reduction of research effort via the API.

6. CONCLUSIONS

The API of the GNSS software receiver is the architecture
with a flexible structure. This paper was aimed at
implementing the navigation unit using the API. It
implemented a multi-frequency and multi-constellation
GNSS receiver with small research efforts within a short
period of time. It also presented the measurement results in
Korea regions. The performance evaluation was concluded
that the accuracy of the system implemented with the API
was relatively lower than that of SX3. Nonetheless, the multi-
frequency and multi-constellation GNSS required a great
study efforts due to the drawback that was difficult to handle
flexibly although it was more robust than single GNSS.
To overcome this, this study proposed a flexible method
through the API platform. Our implementation showed
that the cost and time required to develop GNSS receivers
could be dramatically reduced. As described in the above,
the flexibility of the API platform can be a great benefit in
terms of a convenient analysis as well as a convenience of
performance upgrade of the system and scalability of the
integrated receiver.

ACKNOWLEDGEMENT

This research was supported by the Space Core
Technology Development Program of the National Research
Foundation (NRF) funded by the Ministry of Science & ICT, S.
Korea (No. NRF-2017M1A3A3A02016715)

AUTHOR CONTRIBUTIONS

Han, J.S. and Won, J.H. contributed to the design and
implementation of the research, to the analysis of the results
and to the writing of the manuscript.

“Conceptualization, Han, J.S and Won, J.H.; Methodology,
Han,].S; Software, Han, J.S; Validation: Han, J.S; Formal
analysis, Han, J.S. and Won, J.H.; Investigation: Han,].S;
Resources: Han, J.S and Won, J.H.; Data curation, Han, J.S.;
Writing-original draft Preparation: Han, J.S.; Writing-review
and editing: Han, J.S. and Won, J.H.; Visualization, Han, J.S.;
Supervision, Won, J.H.; Project administration, Won, J.H.;

Jin-Su Han & Jong-Hoon Won Result GNSS Software Receiver Using API 1 1

Funding Acqusition, Won, J.H;

REFERENCES

Anghileri, M., Pany, T., Guixens, D. S., Won, J. H., Ayaz,
A. S., et al. 2007, Performance Evaluation of a Multi-
frequency GPS/Galileo/SBAS Software Receiver,
Proceedings of the 20th ION GNSS International
Technical Meeting of the Satellite Division, Sep 25-28,
2007, Fort Worth, TX, pp.2749-2761

Abbasian, N. S. & Petovello, M. G. 2008, Multichannel Dual
Frequency GLONASS Software Receiver, Proceedings of
the 21st ION GNSS International Technical Meeting of
the Satellite Division, Sep 16-19, 2008, Savannah, GA,
pp.1719-1729

Chen, Y. H. & Juang, J. C. 2007, A GNSS Software Receiver
Approach for the Processing of Intermittent Data,
Proceedings of the 20th ION GNSS International
Technical Meeting of the Satellite Division, Sep 25-28,
2007, Fort Worth, TX, pp.2772-2777

Ebner, H. 2014, European GNSS evolution, EU Global
Navigation Satellite System (GNSS) Research and
Technology, HR2020 Stakeholder Consultation
Workshop, Brussels, 4 Jun 2014

Heinrichs, G., Restle, M., Dreischer, C., & Pany, T. 2007, NavX -
NSR- A Novel Galileo/GPS Navigation Software Receiver,
Proceedings of the 20th ION GNSS International Technical
Meeting of the Satellite Division, Sep 25-28, 2007, Fort
Worth, TX, pp.1329-1334

IFEN GmbH 2016, SX3 Navigation Software Receiver, User
Manual version 3.2 (Poing, Germany: IFEN GmbH)

Mattos, P. G. & Pisoni, F. 2013, Quad Constellation Receiver
- GPS, GLONASS, Galileo, BeiDou, Proceedings of the
26th ION GNSS International Technical Meeting of the
ION Satellite Division, Sep 16-20, 2013, Nashville, TN,
pp.176-181

Misra, P. & Enge, P. 2011, Global Positioning System:
Signals, Measurements, and Performance, 2nd ed.
(Massachusetts: Ganga-Jamuna Press)

Mendel, J. M. 1995, Lessons in Estimation Theory for Signal
Processing, Communications, and Control, 1st ed. (New
Jersey: Prentice-Hall International, Inc.)

Wu, C.,, Qian, Y., Cui, X., & Lu, M. 2009, The Optimized
Method and Algorithms in the CPU&GPU-Based
GNSS Software Receiver, Proceedings of the 22nd ION
GNSS International Technical Meeting of the Satellite
Division, Sep 22-25, 2009, Savannah, GA, pp,339-343

http://www.ipnt.or.kr

12 JPNT 8(1), 1-12 (2019)

APPENDICES

1.Pseudo code: NLSE

Algorithm NLSE
Input: Initial Position, H matrix, Pseudorange,
Signal Power, Tropo Error, Iono Error, Clock Error,
GPS Time
Output: Estimation Position
Estimation_Position = Initial_Position
Estimation_Position = Initial_Position
While delta < 107-5
e =Pseudorange - H_matrix * Initial Position
G =inv(H_matrix_transposed * Weighting * H_matrix)
// inv function : Inverse matrix.
delta = G * H_matrix_transposed *W * e
Estimation_Position = Estimation_Position - delta
EndWhile
Return Estimation_Position

2.Pseudo code: APl Program

Algorithm Processing Channel Measurement Data
Input: Satellite Position, Pseudorange, Signal Power,
Tropo Error, Iono Error, Clock Error, GPS Time
Output: Position (Infinite loop)
While 1
IF First_Process Then
Initial_Position = function Initial_Position
(Satellite_Position)
IF SPP OK Then
n = The_Number_of_data
H_matrix[4][n] = {Satellite_Position_array(X,Y,Z,1)}
H_matrix = function Integrity_check(H_matrix)
Estimation_Position = function NLSE
(Initial_Position, H_matrix,
Pseudorange, Signal_Power,
Tropo_Error, Iono_Error,
Clock_Error, GPS_Time)
Initial_Position = Estimation_Position
EndIF
EndWhile

Jin-Su Han received the B.S. degree from
Inha University, Korea, in 2017. He is

_—

currently in the M.S. degree course in
Department of Electrical Engineering at Inha
University, Korea. His research interests

include software receiver and INS/DR.

https://doi.org/10.11003/JPNT.2019.8.1.1

Jong-Hoon Won received the ph.D.degree in
the Department of Control Engineering from
Ajou University, Korea, in 2005. After then,
he had worked with the Institute of Space
Application at University Federal Armed
v Forces (UFAF) Munich, Germany. He was
nominated as Head of GNSS Laboratory in 2011 at the same
institute, and involved in lectures on advanced receiver
technology at Technical University of Munich (TUM) since
2009. He is currently an assistant professor of the Department
of Electrical Engineering at Inha University. His research
interests include GNSS signal design, receiver, navigation,
target tracking systems and self-driving cars.

