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1. IntroductIon

The coarse/acquisition (C/A) code signal of the global 

positioning systems (GPS) uses a binary phase shift keying 

(BPSK) modulated pseudo-random noise (PRN) code of 

1023 chips long. Since GPS satellites are orbiting the earth 

with a velocity about 3.92 km/s, and the center frequency 

of the C/A code signal is L
1
=1.57542 GHz, the Doppler 

frequency of a GPS signal arriving at the earth surface can 

be anywhere within [-5, 5] kHz (Kaplan & Hegarty 2006). For 

continuous positioning, the acquisition function in a GPS 

receiver needs to find the true code phases and Doppler 
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ABStrAct

Fast Fourier transform (FFT)-based parallel acquisition techniques with reduced computational complexity have been 

widely used for the acquisition of binary phase shift keying (BPSK) global positioning system (GPS) signals. In this paper, we 

propose a low computational FFT-based fine acquisition technique, for binary offset carrier (BOC) modulated BPSK signals, 

that depending on the subcarrier-to-code chip rate ratio (SCR) selectively utilizes the computationally efficient frequency-

domain realization of the BPSK-like technique and two-dimensional compressed correlator (BOC-TDCC) technique in the 

first stage in order to achieve a fast coarse acquisition and accomplishes a fine acquisition in the second stage. It is analyzed 

and demonstrated that the proposed technique requires much smaller mean fine acquisition computation (MFAC) than the 

conventional FFT-based BOC acquisition techniques. The proposed technique is one of the first techniques that achieves a 

fast FFT-based fine acquisition of BOC signals with a slight loss of detection probability. Therefore, the proposed technique is 

beneficial for the receivers to make a quick position fix when there are plenty of strong (i.e., line-of-sight) GNSS satellites to be 

searched.
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frequencies of all incoming GPS signals and the tracking 

function is successfully tracking the acquired GPS signals. 

Since the code phase and Doppler frequency search step 

sizes in the acquisition function are 0.5 chips and 500 Hz in 

many receivers, respectively, the GPS acquisition function 

needs to test a huge number of code phase and Doppler 

frequency hypotheses in a two-dimensional (2D) hypothesis 

space, which is, therefore, a computationally expensive and 

time consuming process.

Among a number of GPS acquisition techniques 

developed and introduced in the literature (Borre et al. 

2007, Kong & Kim 2013), parallel acquisition techniques 

based on multiple parallel correlators (matched filters) 

have been widely used to speed up the acquisition at the 

cost of increased hardware complexity in the receiver 

(Borre et al. 2007). And the fast Fourier transform (FFT)-

based technique implemented in a digital signal processor 

(DSP) (Akopian 2005, Borre et al. 2007) has become one 

of the most popular parallel acquisition techniques. To 
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code chip rate ratio (SCR) of the BOC signal. Exploiting that 

the FFT-based BPSK-like technique has more computational 

advantage over the modified FFT-based BOC-TDCC for 

higher SCR, we propose a low computational FFT-based fine 

BOC signal acquisition technique that selectively utilizes 

the BPSK-like (Margaria et al. 2008) technique and the 

modified FFT-based BOC-TDCC technique depending on 

the SCR in the first stage to achieve a fast coarse acquisition. 

The proper selection to the technique to be used in the first 

stage depends on the SCR and is theoretically analyzed. 

In the second stage, the proposed technique exploits the 

conventional correlators to finalize the fine acquisition 

of the BOC signal. The proposed technique is one of the 

first FFT-based fast fine acquisition techniques for BOC 

signals, and it is demonstrated that the proposed technique 

achieves multiple times smaller computational cost in the 

acquisition of BOC signals than conventional FFT-based 

technique.

There is an additional benefit with the proposed 

technique. At present, the number of visible GNSS satellites 

is increasing as new satellites are launched to their orbits 

and is expected to be higher than 60 at any location on earth 

surface. In this case, a GNSS receiver may need to quickly 

search line-of-sight (LOS) satellites rather than try to detect 

weak GNSS satellites, since there are plenty of LOS satellites 

in the sky. Therefore, a GNSS acquisition technique that 

enables fast (i.e., low computational) acquisition of strong 

LOS satellites is strongly required by the commercial 

market. The proposed technique demonstrates maximum 10 

times lower computational cost with slight lower detection 

probability than the conventional acquisition techniques for 

LOS GNSS signals.

The rest of this paper is organized as follows. Section 2 

introduces an overview of the proposed low computational 

FFT-based fine BOC signal acquisition technique depending 

on the SCR. Section 3 and Section 4 show the BPSK-like-

based (i.e., proposed-1 technique) and the modified 

TDCC-based (i.e., proposed-2 technique), respectively, 

used for the fast coarse acquisition. Section 5 shows the 

computational complexity and performance analysis of the 

proposed technique. Theoretical analysis of the SCR-based 

selection is derived in Section 6, and the performance of the 

proposed technique is demonstrated with numerous Monte 

Carlo simulations and comparisons to the conventional 

FFT-based BOC(msc, mc) acquisition technique are provided 

and discussed in Section 7. Finally, our conclusion is drawn 

in Section 8.

The following notations are used throughout this paper. 

Vectors or matrices are denoted by boldface symbols. 

Frequency domain signals are denoted by capital letters, 

reduce the hardware complexity and the mean acquisition 

computation (MAC) of the FFT-based techniques, a number 

of signal processing algorithms have been introduced in 

the literature. For example, average correlator (AC) (Yi et 

al. 2008) can reduce FFT size by averaging over-sampled 

received signal, and the shifting replica (SR) (Akopian 2005) 

can reduce the frequency-domain complex multiplications 

when multiple period of the PRN code is correlated. In 

folding and dual-folding techniques (Yang et al. 1999, Li 

et al. 2008), locally generated PRN code sequence and 

incoming global navigation satellite systems (GNSS) signal 

are folded, respectively, and correlated in the frequency-

domain to reduce the computational cost and time at 

the cost of Signal-to-Noise Ratio (SNR) degradation 

proportional to the number of folding. In Kong & Kim (2013) 

and Kim & Kong (2014b), two-dimensional compressed 

correlator (TDCC) and FFT-based TDCC are introduced for 

the serial and the frequency-domain parallel search of BPSK 

signals to reduce the mean acquisition time (MAT) and the 

mean acquisition computation (MAC), respectively.

In GNSS, there are various BOC signals that is BPSK 

signals modulated by binary offset carrier BOC(m sc, 

mc) (Julien et al. 2007, Dovis et al. 2008, Borio 2011), for 

example, BOC(1, 1), BOC(10, 5), BOC(15, 2.5), and BOC(14, 

2). Accordingly, studies for fast BOC signal acquisition have 

been introduced in the literature recently; deterministic 

compressed acquisition (DCA) technique (Kong 2013) for 

BOC(1, 1) signals, and the time-domain TDCC technique 

for various BOC(msc, mc) signals (BOC-TDCC in short) 

(Kim & Kong 2014a). However, up to the present, there 

has been little study to develop computationally efficient 

FFT-based fine acquisition technique for BOC signals. 

In addition, to reduce algorithmic complexity to handle 

multiple sign changes within a chip appearing in the auto-

correlation function (ACF) output of BOC signals, BOC 

acquisition techniques such as single-sideband (SSB) and 

double-sideband (DSB) aim to achieve only the coarse 

acquisition of BOC signals, i.e., detecting the code phase 

with a half code chip resolution (Fishman & Betz 2000). 

The BPSK-like technique utilizing the SSB of the BOC signal 

spectrum achieves a coarse acquisition and an additional 

fine acquisition, i.e., detecting the code phase with a half 

subcarrier chip resolution, is required for the immediate 

start of the BOC tracking function.

In this paper, we show that the modified FFT-based 

BOC-TDCC, the FFT-based fine acquisition of BOC signals 

utilizing the BOC-TDCC (Kim & Kong 2014a) modified with 

spectrum segmentation and folding (SSF), and the FFT-

based BPSK-like technique achieves a low computational 

acquisition of BOC signals depending on the subcarrier-to-
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and time domain signals are denoted by small letter.

2. oVErVIEW oF LoW coMPutAtIonAL 
Boc AcQuISItIon

Let r(t) be a BOC(msc, mc) signal arriving at a ground 

GNSS receiver as
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utilizes the BPSK-like (Margariaet al.2008) technique and the modified FFT-based BOC-
TDCC technique depending on the SCR in the first stage to achieve a fast coarse acquisition. 
The proper selection to the technique to be used in the first stage depends on the SCR and is 
theoretically analyzed. In the second stage, the proposed technique exploits the conventional 
correlators to finalize the fine acquisition of the BOC signal. The proposed technique is one of 
the first FFT-based fast fine acquisition techniques for BOC signals, and it is demonstrated that 
the proposed technique achieves multiple times smaller computational cost in the acquisition of 
BOC signals than conventional FFT-based technique.

There is an additional benefit with the proposed technique. At present, the number of 
visible GNSS satellites is increasing as new satellites are launched to their orbits and is 
expected to be higher than 60 at any location on earth surface. In this case, a GNSS receiver 
may need to quickly search LOS satellites rather than try to detect weak GNSS satellites, since 
there are plenty of LOS satellites in the sky. Therefore, a GNSS acquisition technique that 
enables fast (i.e., low computational) acquisition of strong LOS satellites is strongly required by 
the commercial market. The proposed technique demonstrates maximum 10 times lower 
computational cost with slight lower detection probability than the conventional acquisition 
techniques for LOS GNSS signals.

The rest of this paper is organized as follows. Section 2 introduces an overview of the 
proposed low computational FFT-based fine BOC signal acquisition technique depending on 
the SCR. Section 3 and Section 4 show the BPSK-like-based (i.e., proposed-1 technique) and 
the modified TDCC-based (i.e., proposed-2 technique), respectively, used for the fast coarse
acquisition. Section 5 shows the computational complexity and performance analysis of the 
proposed technique. Theoretical analysis of the SCR-based selection is derived in Section 6, 
and the performance of the proposed technique is demonstrated with numerous Monte Carlo 
simulations and comparisons to the conventional FFT-based BOC(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 ) acquisition 
technique are provided and discussed in Section 7. Finally, our conclusion is drawn in Section 8.

The following notations are used throughout this paper. Vectors or matrices are denoted by 
boldface symbols. Frequency domain signals are denoted by capital letters, and time domain 
signals are denoted by small letter.

2.OVERVIEW OF LOW COMPUTATIONAL BOC ACQUISITION

Let 𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) be a BOC(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) signal arriving at a ground GNSS receiver as

𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚 (𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 (2𝜋𝜋𝜋𝜋(𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼+𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴 )𝑡𝑡𝑡𝑡+𝜃𝜃𝜃𝜃) + 𝑤𝑤𝑤𝑤(𝑡𝑡𝑡𝑡), (1)

where 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴(𝑡𝑡𝑡𝑡)and 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡)represent the amplitude, data at 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏 bps, and PRN code at a code rate 
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠(= 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 = 1/𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠) [Hz], respectively, 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 0 , 𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 = 1.023 MHZ is the reference frequency, 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚 (𝑡𝑡𝑡𝑡) represents the subcarrier function with a subcarrier frequency 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(= 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟) [Hz] for 
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 as

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚 (𝑡𝑡𝑡𝑡) = � sgn(sin(2𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡)) ,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 sin𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
sgn(cos(2𝜋𝜋𝜋𝜋𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡)) ,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 cos𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ,

 (2)

and 𝜏𝜏𝜏𝜏 , 𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 , 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴 ,𝜃𝜃𝜃𝜃 and 𝑤𝑤𝑤𝑤(𝑡𝑡𝑡𝑡) represent the code phase, intermediate frequency (IF), Doppler 
frequency, unknown carrier phase of the incoming signal and a complex AWGN noise with two-

 (1)

where A, D(t) and Pm(t) represent the amplitude, data at 

Rb bps, and PRN code at a code rate Rc(=mcfr=1/Tc) [Hz], 

respectively, mc>0, fr=1.023 MHZ is the reference frequency, 

scm(t) represents the subcarrier function with a subcarrier 

frequency fsc(=mscfr) [Hz] for msc≥mc as
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The proper selection to the technique to be used in the first stage depends on the SCR and is 
theoretically analyzed. In the second stage, the proposed technique exploits the conventional 
correlators to finalize the fine acquisition of the BOC signal. The proposed technique is one of 
the first FFT-based fast fine acquisition techniques for BOC signals, and it is demonstrated that 
the proposed technique achieves multiple times smaller computational cost in the acquisition of 
BOC signals than conventional FFT-based technique.

There is an additional benefit with the proposed technique. At present, the number of 
visible GNSS satellites is increasing as new satellites are launched to their orbits and is 
expected to be higher than 60 at any location on earth surface. In this case, a GNSS receiver 
may need to quickly search LOS satellites rather than try to detect weak GNSS satellites, since 
there are plenty of LOS satellites in the sky. Therefore, a GNSS acquisition technique that 
enables fast (i.e., low computational) acquisition of strong LOS satellites is strongly required by 
the commercial market. The proposed technique demonstrates maximum 10 times lower 
computational cost with slight lower detection probability than the conventional acquisition 
techniques for LOS GNSS signals.

The rest of this paper is organized as follows. Section 2 introduces an overview of the 
proposed low computational FFT-based fine BOC signal acquisition technique depending on 
the SCR. Section 3 and Section 4 show the BPSK-like-based (i.e., proposed-1 technique) and 
the modified TDCC-based (i.e., proposed-2 technique), respectively, used for the fast coarse
acquisition. Section 5 shows the computational complexity and performance analysis of the 
proposed technique. Theoretical analysis of the SCR-based selection is derived in Section 6, 
and the performance of the proposed technique is demonstrated with numerous Monte Carlo 
simulations and comparisons to the conventional FFT-based BOC(𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 ) acquisition 
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and 𝜏𝜏𝜏𝜏 , 𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 , 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴 ,𝜃𝜃𝜃𝜃 and 𝑤𝑤𝑤𝑤(𝑡𝑡𝑡𝑡) represent the code phase, intermediate frequency (IF), Doppler 
frequency, unknown carrier phase of the incoming signal and a complex AWGN noise with two-

 (2)

and τ ,  f IF,  f D,  θ  and w ( t ) represent the code phase, 

intermediate frequency (IF), Doppler frequency, unknown 

carrier phase of the incoming signal and a complex AWGN 

noise with two-sided power spectral density 
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sided power spectral density 𝑁𝑁𝑁𝑁0
2

, respectively. The ratio 2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 is constrained to be a positive 
integer (Julien et al. 2007).

BPSK-like technique (Fishman&Betz2000) uses a bandpass filter (BPF) to process one of 
the two main lobes of the BOC spectrum in the acquisition, where the sampling frequency and 
the computational cost can be reduced at the cost of SNR loss. The advantage of the BPSK-like 
technique increases as the SCR, i.e., 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 , increases. On the other hand, when the SCR is 
small, the advantage of the modified FFT-based BOC-TDCC that we propose in Section 3 is 
stronger than the BPSK-like technique.

Fig. 1 shows the overall diagram of the proposed technique that utilizes the FFT-based 
BPSK-like technique and the modified FFT-based BOC-TDCC technique depending on the 
SCR; When the decision threshold 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 is smaller than the SCR, the proposed technique switches 
to the BPSK-like technique. The performance of the proposed technique with respect to the 
decision threshold is theoretically analyzed and tested in Section 6, where the proper value of 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚
is defined. In the following, proposed-1 technique and proposed-2 technique denote the FFT-
based BPSK-like technique and the modified FFT-based BOC-TDCC technique, respectively. 
Note that in Fig. 1 the proposed-1 and proposed-2 techniques are for the first stage, where a 
coarse acquisition of the BOC signal is performed, i.e., code chip level acquisition, and that the 
second stage employs the conventional correlation-based search for a fine acquisition, i.e., 
subcarrier chip level acquisition.

3. PROPOSED-1: FFT-BASED BPSK-LIKE TECHNIQUE

In this section, we propose a FFT-based BPSK-like technique (proposed-1 technique). The 
overall process of the proposed-1 technique can be easily explained with a schematic diagram in 
Fig. 2, where the operationⒹ𝑘𝑘𝑘𝑘 represents the circular shift of 𝑘𝑘𝑘𝑘samples. The incoming signal 
𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛] is first FFT’d as
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where 𝑘𝑘𝑘𝑘 = 0, 1,⋯,𝑀𝑀𝑀𝑀 − 1,𝑀𝑀𝑀𝑀 is the number of FFT-points and is the smallest power of 2 integer 
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denotes the additionally increased index for the Doppler frequency hypotheses. To deal with 
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𝐑𝐑𝐑𝐑1
𝑎𝑎𝑎𝑎 = 𝐑𝐑𝐑𝐑𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 [𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1:𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1)] 
𝐑𝐑𝐑𝐑2
𝑎𝑎𝑎𝑎 = 𝐑𝐑𝐑𝐑𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 [𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)],
(5a)
(5b)
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𝑎𝑎𝑎𝑎 = 𝐑𝐑𝐑𝐑𝑠𝑠𝑠𝑠
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Fig. 1. Schematic diagram of the proposed technique.

Fig 2. Proposed-1: FFT-based BPSK-like technique.
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decision threshold is theoretically analyzed and tested in Section 6, where the proper value of 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚
is defined. In the following, proposed-1 technique and proposed-2 technique denote the FFT-
based BPSK-like technique and the modified FFT-based BOC-TDCC technique, respectively. 
Note that in Fig. 1 the proposed-1 and proposed-2 techniques are for the first stage, where a 
coarse acquisition of the BOC signal is performed, i.e., code chip level acquisition, and that the 
second stage employs the conventional correlation-based search for a fine acquisition, i.e., 
subcarrier chip level acquisition.

3. PROPOSED-1: FFT-BASED BPSK-LIKE TECHNIQUE

In this section, we propose a FFT-based BPSK-like technique (proposed-1 technique). The 
overall process of the proposed-1 technique can be easily explained with a schematic diagram in 
Fig. 2, where the operationⒹ𝑘𝑘𝑘𝑘 represents the circular shift of 𝑘𝑘𝑘𝑘samples. The incoming signal 
𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛] is first FFT’d as

𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘] = � 𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛]𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑀𝑀𝑀𝑀 
𝑀𝑀𝑀𝑀−1

𝑛𝑛𝑛𝑛=0

, (3)

where 𝑘𝑘𝑘𝑘 = 0, 1,⋯,𝑀𝑀𝑀𝑀 − 1,𝑀𝑀𝑀𝑀 is the number of FFT-points and is the smallest power of 2 integer 
larger than 2𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁 (Yang 2001),𝑣𝑣𝑣𝑣 = 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠/𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 ,𝑁𝑁𝑁𝑁 is the number of code chips in one PRN period. And 
𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘] is circular shifted to search for Doppler frequencyhypotheses as

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 [𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑎𝑎], (4)

where 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 denotes the index of the smallest individual Doppler frequency hypothesis, and a 
denotes the additionally increased index for the Doppler frequency hypotheses. To deal with 
BPSK-like signal, two main lobes of the BOC signal are captured as

𝐑𝐑𝐑𝐑1
𝑎𝑎𝑎𝑎 = 𝐑𝐑𝐑𝐑𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 [𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1:𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1)] 
𝐑𝐑𝐑𝐑2
𝑎𝑎𝑎𝑎 = 𝐑𝐑𝐑𝐑𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 [𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)],
(5a)
(5b)

where 𝑄𝑄𝑄𝑄is the number of FFT-points and is the smallest positive integer that is a power of 2 

 (5a)
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sided power spectral density 𝑁𝑁𝑁𝑁0
2

, respectively. The ratio 2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 is constrained to be a positive 
integer (Julien et al. 2007).

BPSK-like technique (Fishman&Betz2000) uses a bandpass filter (BPF) to process one of 
the two main lobes of the BOC spectrum in the acquisition, where the sampling frequency and 
the computational cost can be reduced at the cost of SNR loss. The advantage of the BPSK-like 
technique increases as the SCR, i.e., 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 , increases. On the other hand, when the SCR is 
small, the advantage of the modified FFT-based BOC-TDCC that we propose in Section 3 is 
stronger than the BPSK-like technique.

Fig. 1 shows the overall diagram of the proposed technique that utilizes the FFT-based 
BPSK-like technique and the modified FFT-based BOC-TDCC technique depending on the 
SCR; When the decision threshold 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 is smaller than the SCR, the proposed technique switches 
to the BPSK-like technique. The performance of the proposed technique with respect to the 
decision threshold is theoretically analyzed and tested in Section 6, where the proper value of 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚
is defined. In the following, proposed-1 technique and proposed-2 technique denote the FFT-
based BPSK-like technique and the modified FFT-based BOC-TDCC technique, respectively. 
Note that in Fig. 1 the proposed-1 and proposed-2 techniques are for the first stage, where a 
coarse acquisition of the BOC signal is performed, i.e., code chip level acquisition, and that the 
second stage employs the conventional correlation-based search for a fine acquisition, i.e., 
subcarrier chip level acquisition.

3. PROPOSED-1: FFT-BASED BPSK-LIKE TECHNIQUE

In this section, we propose a FFT-based BPSK-like technique (proposed-1 technique). The 
overall process of the proposed-1 technique can be easily explained with a schematic diagram in 
Fig. 2, where the operationⒹ𝑘𝑘𝑘𝑘 represents the circular shift of 𝑘𝑘𝑘𝑘samples. The incoming signal 
𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛] is first FFT’d as

𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘] = � 𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛]𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑀𝑀𝑀𝑀 
𝑀𝑀𝑀𝑀−1

𝑛𝑛𝑛𝑛=0

, (3)

where 𝑘𝑘𝑘𝑘 = 0, 1,⋯,𝑀𝑀𝑀𝑀 − 1,𝑀𝑀𝑀𝑀 is the number of FFT-points and is the smallest power of 2 integer 
larger than 2𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁 (Yang 2001),𝑣𝑣𝑣𝑣 = 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠/𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 ,𝑁𝑁𝑁𝑁 is the number of code chips in one PRN period. And 
𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘] is circular shifted to search for Doppler frequencyhypotheses as

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 [𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑎𝑎], (4)

where 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 denotes the index of the smallest individual Doppler frequency hypothesis, and a 
denotes the additionally increased index for the Doppler frequency hypotheses. To deal with 
BPSK-like signal, two main lobes of the BOC signal are captured as

𝐑𝐑𝐑𝐑1
𝑎𝑎𝑎𝑎 = 𝐑𝐑𝐑𝐑𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 [𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1:𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1)] 
𝐑𝐑𝐑𝐑2
𝑎𝑎𝑎𝑎 = 𝐑𝐑𝐑𝐑𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 [𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)],
(5a)
(5b)

where 𝑄𝑄𝑄𝑄is the number of FFT-points and is the smallest positive integer that is a power of 2 

 (5b)

where Q is the number of FFT-points and is the smallest 

positive integer that is a power of 2 larger than 2N (Yang 

2001), mF=2log
2
M-log

2
Q-1-1. Same as the process of an incoming 

signal, FFT-transformed locally generated signal G is also 

captured to generate BPSK-like signal as
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 
proposed-2 technique is shown in Fig. 3

 (6)

To correlate the incoming signal and locally generated 

signal, R
1
a [k] and R

2
a [k] are multiplied with the complex 

conjugate of G
h
 [k] to produce Ya [k] as
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 
proposed-2 technique is shown in Fig. 3

 (7a)
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 
proposed-2 technique is shown in Fig. 3

 (7b)

and Y
1
a and Y

2
a are IFFT transformed to get
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 
proposed-2 technique is shown in Fig. 3

 (8a)
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 
proposed-2 technique is shown in Fig. 3

 (8b)

and squares of Y
1
a and Y

2
a are summed as
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 
proposed-2 technique is shown in Fig. 3

 (9)

Denoting a
0
 as the frequency hypotheses index of y

0
a 

whose element is larger than the decision threshold, γ
1
, 

the index of the detected code phase hypothesis τ
y
a and the 

index of the detected Doppler frequency hypothesis f
y
a can 

be expressed as
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 
proposed-2 technique is shown in Fig. 3
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 
proposed-2 technique is shown in Fig. 3

 (10a)
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 

=a0 (10b)

where 
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 

 and 
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larger than 2𝑁𝑁𝑁𝑁 (Yang 2001), 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 = 2log 2𝑀𝑀𝑀𝑀−log 2𝑄𝑄𝑄𝑄−1 − 1. Same as the process of an incoming 
signal, FFT-transformed locally generated signal 𝐆𝐆𝐆𝐆 is also captured to generate BPSK-like signal 
as

𝐆𝐆𝐆𝐆ℎ = 𝐆𝐆𝐆𝐆[𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 1) + 1:𝑄𝑄𝑄𝑄(3𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼/2 + 2)]. (6)

To correlate the incoming signal and locally generated signal, 𝑅𝑅𝑅𝑅1
𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] and 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] are 
multipliedwith the complex conjugate of 𝐺𝐺𝐺𝐺ℎ  [𝑘𝑘𝑘𝑘] to produce 𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎  [𝑘𝑘𝑘𝑘] as

𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘], 
𝑌𝑌𝑌𝑌2
𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘] = 𝑅𝑅𝑅𝑅2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝐺𝐺𝐺𝐺ℎ∗[𝑘𝑘𝑘𝑘],
(7a)
(7b)

and 𝑌𝑌𝑌𝑌1
𝑎𝑎𝑎𝑎 and 𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎 are IFFT transformed to get

𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌1

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

, 

𝑦𝑦𝑦𝑦2
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = �𝑌𝑌𝑌𝑌2

𝑎𝑎𝑎𝑎[𝑘𝑘𝑘𝑘]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑄𝑄𝑄𝑄

𝑄𝑄𝑄𝑄−1

𝑘𝑘𝑘𝑘=0

,

(8a)

(8b)

and squares of 𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 and 𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 are summed as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛] = |𝑦𝑦𝑦𝑦1
𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2 + |𝑦𝑦𝑦𝑦2

𝑎𝑎𝑎𝑎 [𝑛𝑛𝑛𝑛]|2. (9)

Denoting 𝑎𝑎𝑎𝑎0 as the frequency hypotheses index of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 whose element is larger than the decision 
threshold, 𝛾𝛾𝛾𝛾1, the index of the detected code phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 and the index of the detected 
Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 = argmax
𝑛𝑛𝑛𝑛
 �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎0 � (10a)
(10b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ �0,⋯ , �4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∈ {0,⋯ ,𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 1} , 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 is the number of individual 
Doppler frequency hypotheses, and the corresponding individual code phase to be tested in the 
second stage exploiting conventional correlators is 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎(2𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎 , where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎 ∈

{0,⋯ ,2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 − 1} is the index of the corresponding individual code phase hypotheses that 
constitute the detected hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2
technique)(Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 

 

is the number of individual Doppler frequency hypotheses, 

and the corresponding individual code phase to be tested 

in the second stage exploiting conventional correlators is 

τ
y
a(2msc/mc)+m

s
a, where m

s
a
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R2a= Rsa[ ]Q( )3mF/2 + 1 +1:Q( )3mF/2 + 2 ,

where Q  is the number of FFT−points and is the smallest positive integer that is a power of 2 
larger than 2N (Yang 2001), mF= 2log2M−log2Q−1−1. Same as the process of an incoming signal, 
FFT-transformed locally generated signal G is also captured to generate BPSK−like signal as

Gh= G[ ]Q( )3mF/2 + 1 +1:Q( )3mF/2 + 2 . (6)

To correlate the incoming signal and locally generated signal, R1a [k]  and R2a [k]  are multiplied 
with the complex conjugate of Gh [k] to produce Ya [k] as

Y1a[ ]k = R1a[ ]k Gh∗[ ]k ,
Y2a[k] = R2a[k]Gh∗[k],

(7a)
(7b)

and Y1a and Y2a are IFFT transformed to get

y1a[ ]n = ∑
k=0

Q−1
Y1a[ ]k ej2πkn/Q ,

y2a[ ]n = ∑
k=0

Q−1
Y2a[ ]k ej2πkn/Q ,

(8a)

(8b)

and squares of y1a and y2a are summed as

yoa[ ]n = || ||y1a[ ]n 2+|| ||y2a[ ]n 2. (9)

Denoting a0  as the frequency hypotheses index of yoa  whose element is larger than the decision 
threshold, γ1 , the index of the detected code phase hypothesis τya  and the index of the detected 
Doppler frequency hypothesis fya can be expressed as

τya= argmax
n

 || ||yoa0

fya= a0,
(10a)
(10b)

where τya∈ { }0, ⋯ ,⎡⎣
⎤
⎦

4mscQN
mcM −1  and fya∈ { }0, ⋯ ,Fn−1 , Fn is the number of individual Doppler 

frequency hypotheses, and the corresponding individual code phase to be tested in the second 
stage exploiting conventional correlators is τya( )2msc/mc +msa, where msa∈ { }0, ⋯ ,2 msc/mc−1  
is the index of the corresponding individual code phase hypotheses that constitute the detected 

{0,…,2 msc/mc-1} is the index of 

the corresponding individual code phase hypotheses that 

constitute the detected hypothesis in the first stage.

4. ProPoSEd-2: ModIFIEd FFt-BASEd 
Boc-tdcc tEcHnIQuE

In this subsection, we develop the modified FFT-based 

BOC-TDCC technique (proposed-2 technique) (Kim & Kong 

2014a) and derive mathematical expressions. The overall 

process of the proposed-2 technique is shown in Fig. 3.

For BOC signals, a compressed code phase signal with cc 

neighboring code phase hypotheses with a half chip spacing 

is generated as
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proposed-2 technique is shown in Fig. 3
For BOC signals, a compressed code phase signal with 𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵 neighboring code phase 

hypotheses with a half chip spacing is generated as

𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] = � (−1)𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑]
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑑𝑑𝑑𝑑=0

, (11)

where (−1)𝑑𝑑𝑑𝑑 is to compensate the alternating signs in the ACF output, 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/(2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is the 
number of samples per a sub-chip (i.e., a half period of a subcarrier), 𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛] is a locally generated 
PRN code as shown in Fig. 3b. And then, as shown in Fig. 3a, FFT of the compressed code phase 
signal 𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] yields

𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] = �𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛]𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑛𝑛𝑛𝑛=0

. (12)

As shown in Fig. 3c, for compression of neighboring Doppler frequency hypotheses with 1
2𝑇𝑇𝑇𝑇

Hz 
spacing, the incoming signal 𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛] is 𝑀𝑀𝑀𝑀-point FFT'd to yield 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘], and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 consecutive 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘]s are 
coherently combined with 𝜋𝜋𝜋𝜋/2 phase compensation between neighboring Doppler frequency 
hypotheses and, then, circular shifted to test the next coherently combined 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 Doppler 
frequencies at 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓Δ𝑓𝑓𝑓𝑓 apart(Akopian 2005) as

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 [𝑘𝑘𝑘𝑘,ℎ] = � 𝑅𝑅𝑅𝑅�𝑘𝑘𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓ℎ + 𝑏𝑏𝑏𝑏�𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋𝑏𝑏𝑏𝑏 /2

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓−1

𝑎𝑎𝑎𝑎=0

, (13)

where ℎ ∈ �0,⋯ , �𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛/𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� − 1�, and 𝑏𝑏𝑏𝑏 denotes the additionally increased index of the Doppler 
frequency hypothesis. As in Fig. 3a, to correlate the incoming signal with the receiver replica 
signal, 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] and the complex conjugate of 𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] is multiplied to produce 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] as

𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓∗[𝑘𝑘𝑘𝑘]. (14)

Since a compressed PRN code sequence is composed of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 PRN code sequences whose code 
phases are 1/(2𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), the ACF output samples, i.e., the time-domain element of 𝐘𝐘𝐘𝐘𝑏𝑏𝑏𝑏 , should be 
down-sampled. The equivalent down-sampling operation in the time-domain is realized by 
taking every (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 1)-th samples and (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 2)-thsamples of the ACF output for 𝑖𝑖𝑖𝑖 = 0, 1,
⋯,⌊(𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁)/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)⌋ . The down-sampling process is to reduce the number of IFFT points for 
computational saving, since IFFT should be performed for every compressed Doppler frequency 
hypotheses. Using 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and assumingmod(𝑀𝑀𝑀𝑀, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0 for an algebraic simplicity, the first 
samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛,ℎ] (15)

 (11)

where (−1)d is to compensate the alternating signs in the 

ACF output, vn=vmc/(2 msc) is the number of samples per a 

sub-chip (i.e., a half period of a subcarrier), g[n] is a locally 

generated PRN code as shown in Fig. 3b. And then, as 

shown in Fig. 3a, FFT of the compressed code phase signal 

gf[n] yields
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proposed-2 technique is shown in Fig. 3
For BOC signals, a compressed code phase signal with 𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵 neighboring code phase 

hypotheses with a half chip spacing is generated as

𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] = � (−1)𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑]
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑑𝑑𝑑𝑑=0

, (11)

where (−1)𝑑𝑑𝑑𝑑 is to compensate the alternating signs in the ACF output, 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/(2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is the 
number of samples per a sub-chip (i.e., a half period of a subcarrier), 𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛] is a locally generated 
PRN code as shown in Fig. 3b. And then, as shown in Fig. 3a, FFT of the compressed code phase 
signal 𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] yields

𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] = �𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛]𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑛𝑛𝑛𝑛=0

. (12)

As shown in Fig. 3c, for compression of neighboring Doppler frequency hypotheses with 1
2𝑇𝑇𝑇𝑇

Hz 
spacing, the incoming signal 𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛] is 𝑀𝑀𝑀𝑀-point FFT'd to yield 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘], and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 consecutive 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘]s are 
coherently combined with 𝜋𝜋𝜋𝜋/2 phase compensation between neighboring Doppler frequency 
hypotheses and, then, circular shifted to test the next coherently combined 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 Doppler 
frequencies at 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓Δ𝑓𝑓𝑓𝑓 apart(Akopian 2005) as

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 [𝑘𝑘𝑘𝑘,ℎ] = � 𝑅𝑅𝑅𝑅�𝑘𝑘𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓ℎ + 𝑏𝑏𝑏𝑏�𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋𝑏𝑏𝑏𝑏 /2

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓−1

𝑎𝑎𝑎𝑎=0

, (13)

where ℎ ∈ �0,⋯ , �𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛/𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� − 1�, and 𝑏𝑏𝑏𝑏 denotes the additionally increased index of the Doppler 
frequency hypothesis. As in Fig. 3a, to correlate the incoming signal with the receiver replica 
signal, 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] and the complex conjugate of 𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] is multiplied to produce 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] as

𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓∗[𝑘𝑘𝑘𝑘]. (14)

Since a compressed PRN code sequence is composed of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 PRN code sequences whose code 
phases are 1/(2𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), the ACF output samples, i.e., the time-domain element of 𝐘𝐘𝐘𝐘𝑏𝑏𝑏𝑏 , should be 
down-sampled. The equivalent down-sampling operation in the time-domain is realized by 
taking every (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 1)-th samples and (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 2)-thsamples of the ACF output for 𝑖𝑖𝑖𝑖 = 0, 1,
⋯,⌊(𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁)/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)⌋ . The down-sampling process is to reduce the number of IFFT points for 
computational saving, since IFFT should be performed for every compressed Doppler frequency 
hypotheses. Using 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and assumingmod(𝑀𝑀𝑀𝑀, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0 for an algebraic simplicity, the first 
samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛,ℎ] (15)

 (12)

As shown in Fig. 3c, for compression of neighboring 

Doppler frequency hypotheses with 
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hypothesis in the first stage.

4. PROPOSED-2: MODIFIED FFT-BASED BOC-TDCC TECHNIQUE

In this subsection, we develop the modified FFT-based BOC-TDCC technique (proposed-2 
technique) (Kim & Kong 2014a) and derive mathematical expressions. The overall process of the 
proposed-2 technique is shown in Fig. 3

For BOC signals, a compressed code phase signal with cC  neighboring code phase 
hypotheses with a half chip spacing is generated as

gf[ ]n = ∑
d=0

cc−1

( − 1)dg[ ]n − vnd , (11)

where ( − 1)d is to compensate the alternating signs in the ACF output, vn= vmc/( )2 msc  is the 
number of samples per a sub-chip (i.e., a half period of a subcarrier), g[n] is a locally generated 
PRN code as shown in Fig. 3b. And then, as shown in Fig. 3a, FFT of the compressed code phase 
signal gf[n] yields

Gf[k] = ∑
n=0

M−1
gf[n]e−j2πkn/M . (12)

As shown in Fig. 3c, for compression of neighboring Doppler frequency hypotheses with 
1

2T Hz 

spacing, the incoming signal r[n]  is M−point FFT'd to yield R[k] , and cf  consecutive R[k]s are 
coherently combined with π/2  phase compensation between neighboring Doppler frequency 
hypotheses and, then, circular shifted to test the next coherently combined cf Doppler frequencies 
at cfΔf apart (Akopian 2005) as

Rsb[k,h] = ∑
a=0

cf−1

R[ ]k + ci+cfh + b e−jπb/2 , (13)

where h ∈ { }0, ⋯ ,⎡⎢ ⎤⎥Fn/cf −1 , and b  denotes the additionally increased index of the Doppler 
frequency hypothesis. As in Fig. 3a, to correlate the incoming signal with the receiver replica 
signal, Rsb[k,h] and the complex conjugate of Gf[k] is multiplied to produce Yb[k,h] as

Yb[ ]k,h = Rsb[ ]k,h Gf∗[ ]k . (14)

Since a compressed PRN code sequence is composed of cc  PRN code sequences whose code 

 Hz spacing, the 

incoming signal r[n] is M-point FFT'd to yield R[k], and cf 
consecutive R[k]s are coherently combined with π/2 phase 

compensation between neighboring Doppler frequency 

hypotheses and, then, circular shifted to test the next 

coherently combined cf Doppler frequencies at cfΔf apart 

(Akopian 2005) as
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proposed-2 technique is shown in Fig. 3
For BOC signals, a compressed code phase signal with 𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵 neighboring code phase 

hypotheses with a half chip spacing is generated as

𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] = � (−1)𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑]
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑑𝑑𝑑𝑑=0

, (11)

where (−1)𝑑𝑑𝑑𝑑 is to compensate the alternating signs in the ACF output, 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/(2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is the 
number of samples per a sub-chip (i.e., a half period of a subcarrier), 𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛] is a locally generated 
PRN code as shown in Fig. 3b. And then, as shown in Fig. 3a, FFT of the compressed code phase 
signal 𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] yields

𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] = �𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛]𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑛𝑛𝑛𝑛=0

. (12)

As shown in Fig. 3c, for compression of neighboring Doppler frequency hypotheses with 1
2𝑇𝑇𝑇𝑇

Hz 
spacing, the incoming signal 𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛] is 𝑀𝑀𝑀𝑀-point FFT'd to yield 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘], and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 consecutive 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘]s are 
coherently combined with 𝜋𝜋𝜋𝜋/2 phase compensation between neighboring Doppler frequency 
hypotheses and, then, circular shifted to test the next coherently combined 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 Doppler 
frequencies at 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓Δ𝑓𝑓𝑓𝑓 apart(Akopian 2005) as

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 [𝑘𝑘𝑘𝑘,ℎ] = � 𝑅𝑅𝑅𝑅�𝑘𝑘𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓ℎ + 𝑏𝑏𝑏𝑏�𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋𝑏𝑏𝑏𝑏 /2

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓−1

𝑎𝑎𝑎𝑎=0

, (13)

where ℎ ∈ �0,⋯ , �𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛/𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� − 1�, and 𝑏𝑏𝑏𝑏 denotes the additionally increased index of the Doppler 
frequency hypothesis. As in Fig. 3a, to correlate the incoming signal with the receiver replica 
signal, 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] and the complex conjugate of 𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] is multiplied to produce 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] as

𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓∗[𝑘𝑘𝑘𝑘]. (14)

Since a compressed PRN code sequence is composed of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 PRN code sequences whose code 
phases are 1/(2𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), the ACF output samples, i.e., the time-domain element of 𝐘𝐘𝐘𝐘𝑏𝑏𝑏𝑏 , should be 
down-sampled. The equivalent down-sampling operation in the time-domain is realized by 
taking every (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 1)-th samples and (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 2)-thsamples of the ACF output for 𝑖𝑖𝑖𝑖 = 0, 1,
⋯,⌊(𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁)/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)⌋ . The down-sampling process is to reduce the number of IFFT points for 
computational saving, since IFFT should be performed for every compressed Doppler frequency 
hypotheses. Using 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and assumingmod(𝑀𝑀𝑀𝑀, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0 for an algebraic simplicity, the first 
samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛,ℎ] (15)

 (13)
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proposed-2 technique is shown in Fig. 3
For BOC signals, a compressed code phase signal with 𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵 neighboring code phase 

hypotheses with a half chip spacing is generated as

𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] = � (−1)𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑]
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑑𝑑𝑑𝑑=0

, (11)

where (−1)𝑑𝑑𝑑𝑑 is to compensate the alternating signs in the ACF output, 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/(2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is the 
number of samples per a sub-chip (i.e., a half period of a subcarrier), 𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛] is a locally generated 
PRN code as shown in Fig. 3b. And then, as shown in Fig. 3a, FFT of the compressed code phase 
signal 𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] yields

𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] = �𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛]𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑛𝑛𝑛𝑛=0

. (12)

As shown in Fig. 3c, for compression of neighboring Doppler frequency hypotheses with 1
2𝑇𝑇𝑇𝑇

Hz 
spacing, the incoming signal 𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛] is 𝑀𝑀𝑀𝑀-point FFT'd to yield 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘], and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 consecutive 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘]s are 
coherently combined with 𝜋𝜋𝜋𝜋/2 phase compensation between neighboring Doppler frequency 
hypotheses and, then, circular shifted to test the next coherently combined 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 Doppler 
frequencies at 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓Δ𝑓𝑓𝑓𝑓 apart(Akopian 2005) as

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 [𝑘𝑘𝑘𝑘,ℎ] = � 𝑅𝑅𝑅𝑅�𝑘𝑘𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓ℎ + 𝑏𝑏𝑏𝑏�𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋𝑏𝑏𝑏𝑏 /2

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓−1

𝑎𝑎𝑎𝑎=0

, (13)

where ℎ ∈ �0,⋯ , �𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛/𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� − 1�, and 𝑏𝑏𝑏𝑏 denotes the additionally increased index of the Doppler 
frequency hypothesis. As in Fig. 3a, to correlate the incoming signal with the receiver replica 
signal, 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] and the complex conjugate of 𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] is multiplied to produce 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] as

𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓∗[𝑘𝑘𝑘𝑘]. (14)

Since a compressed PRN code sequence is composed of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 PRN code sequences whose code 
phases are 1/(2𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), the ACF output samples, i.e., the time-domain element of 𝐘𝐘𝐘𝐘𝑏𝑏𝑏𝑏 , should be 
down-sampled. The equivalent down-sampling operation in the time-domain is realized by 
taking every (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 1)-th samples and (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 2)-thsamples of the ACF output for 𝑖𝑖𝑖𝑖 = 0, 1,
⋯,⌊(𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁)/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)⌋ . The down-sampling process is to reduce the number of IFFT points for 
computational saving, since IFFT should be performed for every compressed Doppler frequency 
hypotheses. Using 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and assumingmod(𝑀𝑀𝑀𝑀, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0 for an algebraic simplicity, the first 
samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛,ℎ] (15)

, and b denotes the additionally 

increased index of the Doppler frequency hypothesis. As in 

Fig. 3a, to correlate the incoming signal with the receiver 

replica signal, R
s
b[k,h] and the complex conjugate of G

f
[k] is 

multiplied to produce Yb[k,h] as
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proposed-2 technique is shown in Fig. 3
For BOC signals, a compressed code phase signal with 𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵 neighboring code phase 

hypotheses with a half chip spacing is generated as

𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] = � (−1)𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑]
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑑𝑑𝑑𝑑=0

, (11)

where (−1)𝑑𝑑𝑑𝑑 is to compensate the alternating signs in the ACF output, 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/(2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is the 
number of samples per a sub-chip (i.e., a half period of a subcarrier), 𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛] is a locally generated 
PRN code as shown in Fig. 3b. And then, as shown in Fig. 3a, FFT of the compressed code phase 
signal 𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] yields

𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] = �𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛]𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑛𝑛𝑛𝑛=0

. (12)

As shown in Fig. 3c, for compression of neighboring Doppler frequency hypotheses with 1
2𝑇𝑇𝑇𝑇

Hz 
spacing, the incoming signal 𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛] is 𝑀𝑀𝑀𝑀-point FFT'd to yield 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘], and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 consecutive 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘]s are 
coherently combined with 𝜋𝜋𝜋𝜋/2 phase compensation between neighboring Doppler frequency 
hypotheses and, then, circular shifted to test the next coherently combined 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 Doppler 
frequencies at 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓Δ𝑓𝑓𝑓𝑓 apart(Akopian 2005) as

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 [𝑘𝑘𝑘𝑘,ℎ] = � 𝑅𝑅𝑅𝑅�𝑘𝑘𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓ℎ + 𝑏𝑏𝑏𝑏�𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋𝑏𝑏𝑏𝑏 /2

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓−1

𝑎𝑎𝑎𝑎=0

, (13)

where ℎ ∈ �0,⋯ , �𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛/𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� − 1�, and 𝑏𝑏𝑏𝑏 denotes the additionally increased index of the Doppler 
frequency hypothesis. As in Fig. 3a, to correlate the incoming signal with the receiver replica 
signal, 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] and the complex conjugate of 𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] is multiplied to produce 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] as

𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓∗[𝑘𝑘𝑘𝑘]. (14)

Since a compressed PRN code sequence is composed of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 PRN code sequences whose code 
phases are 1/(2𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), the ACF output samples, i.e., the time-domain element of 𝐘𝐘𝐘𝐘𝑏𝑏𝑏𝑏 , should be 
down-sampled. The equivalent down-sampling operation in the time-domain is realized by 
taking every (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 1)-th samples and (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 2)-thsamples of the ACF output for 𝑖𝑖𝑖𝑖 = 0, 1,
⋯,⌊(𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁)/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)⌋. The down-sampling process is to reduce the number of IFFT points for 
computational saving, since IFFT should be performed for every compressed Doppler frequency 
hypotheses. Using 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and assumingmod(𝑀𝑀𝑀𝑀, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0 for an algebraic simplicity, the first 
samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛,ℎ] (15)

 (14)

Since a compressed PRN code sequence is composed 

of c
c
 PRN code sequences whose code phases are 1/(2f

sc
), 

the ACF output samples, i.e., the time-domain element 

of Yb, should be down-sampled. The equivalent down-

sampling operation in the time-domain is realized by 

taking every (v
n
c

c
i+1)-th samples and (v

n
c

c
i+2)-th samples 

of the ACF output for i=0, 1, …, 
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proposed-2 technique is shown in Fig. 3
For BOC signals, a compressed code phase signal with 𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵 neighboring code phase 

hypotheses with a half chip spacing is generated as

𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] = � (−1)𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑]
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑑𝑑𝑑𝑑=0

, (11)

where (−1)𝑑𝑑𝑑𝑑 is to compensate the alternating signs in the ACF output, 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/(2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is the 
number of samples per a sub-chip (i.e., a half period of a subcarrier), 𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛] is a locally generated 
PRN code as shown in Fig. 3b. And then, as shown in Fig. 3a, FFT of the compressed code phase 
signal 𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] yields

𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] = �𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛]𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑛𝑛𝑛𝑛=0

. (12)

As shown in Fig. 3c, for compression of neighboring Doppler frequency hypotheses with 1
2𝑇𝑇𝑇𝑇

Hz 
spacing, the incoming signal 𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛] is 𝑀𝑀𝑀𝑀-point FFT'd to yield 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘], and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 consecutive 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘]s are 
coherently combined with 𝜋𝜋𝜋𝜋/2 phase compensation between neighboring Doppler frequency 
hypotheses and, then, circular shifted to test the next coherently combined 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 Doppler 
frequencies at 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓Δ𝑓𝑓𝑓𝑓 apart(Akopian 2005) as

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 [𝑘𝑘𝑘𝑘,ℎ] = � 𝑅𝑅𝑅𝑅�𝑘𝑘𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓ℎ + 𝑏𝑏𝑏𝑏�𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋𝑏𝑏𝑏𝑏 /2

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓−1

𝑎𝑎𝑎𝑎=0

, (13)

where ℎ ∈ �0,⋯ , �𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛/𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� − 1�, and 𝑏𝑏𝑏𝑏 denotes the additionally increased index of the Doppler 
frequency hypothesis. As in Fig. 3a, to correlate the incoming signal with the receiver replica 
signal, 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] and the complex conjugate of 𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] is multiplied to produce 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] as

𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓∗[𝑘𝑘𝑘𝑘]. (14)

Since a compressed PRN code sequence is composed of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 PRN code sequences whose code 
phases are 1/(2𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), the ACF output samples, i.e., the time-domain element of 𝐘𝐘𝐘𝐘𝑏𝑏𝑏𝑏 , should be 
down-sampled. The equivalent down-sampling operation in the time-domain is realized by 
taking every (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 1)-th samples and (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 2)-thsamples of the ACF output for 𝑖𝑖𝑖𝑖 = 0, 1,
⋯,⌊(𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁)/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)⌋. The down-sampling process is to reduce the number of IFFT points for 
computational saving, since IFFT should be performed for every compressed Doppler frequency 
hypotheses. Using 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and assumingmod(𝑀𝑀𝑀𝑀, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0 for an algebraic simplicity, the first 
samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛,ℎ] (15)

. The down-

sampling process is to reduce the number of IFFT points 

for computational saving, since IFFT should be performed 

for every compressed Doppler frequency hypotheses. Using 

f
s
=4f

sc
 and assuming mod(M,c

c
)=0 for an algebraic simplicity, 

the first samples of every v
n
c

c
 samples of yb [n,h] are
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proposed-2 technique is shown in Fig. 3
For BOC signals, a compressed code phase signal with 𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵 neighboring code phase 

hypotheses with a half chip spacing is generated as

𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] = � (−1)𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑]
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑑𝑑𝑑𝑑=0

, (11)

where (−1)𝑑𝑑𝑑𝑑 is to compensate the alternating signs in the ACF output, 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/(2 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is the 
number of samples per a sub-chip (i.e., a half period of a subcarrier), 𝑔𝑔𝑔𝑔[𝑛𝑛𝑛𝑛] is a locally generated 
PRN code as shown in Fig. 3b. And then, as shown in Fig. 3a, FFT of the compressed code phase 
signal 𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛] yields

𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] = �𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓[𝑛𝑛𝑛𝑛]𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑛𝑛𝑛𝑛=0

. (12)

As shown in Fig. 3c, for compression of neighboring Doppler frequency hypotheses with 1
2𝑇𝑇𝑇𝑇

Hz 
spacing, the incoming signal 𝑟𝑟𝑟𝑟[𝑛𝑛𝑛𝑛] is 𝑀𝑀𝑀𝑀-point FFT'd to yield 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘], and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 consecutive 𝑅𝑅𝑅𝑅[𝑘𝑘𝑘𝑘]s are 
coherently combined with 𝜋𝜋𝜋𝜋/2 phase compensation between neighboring Doppler frequency 
hypotheses and, then, circular shifted to test the next coherently combined 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 Doppler 
frequencies at 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓Δ𝑓𝑓𝑓𝑓 apart(Akopian 2005) as

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 [𝑘𝑘𝑘𝑘,ℎ] = � 𝑅𝑅𝑅𝑅�𝑘𝑘𝑘𝑘 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓ℎ + 𝑏𝑏𝑏𝑏�𝑒𝑒𝑒𝑒−𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋𝑏𝑏𝑏𝑏 /2

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓−1

𝑎𝑎𝑎𝑎=0

, (13)

where ℎ ∈ �0,⋯ , �𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛/𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� − 1�, and 𝑏𝑏𝑏𝑏 denotes the additionally increased index of the Doppler 
frequency hypothesis. As in Fig. 3a, to correlate the incoming signal with the receiver replica 
signal, 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] and the complex conjugate of 𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓[𝑘𝑘𝑘𝑘] is multiplied to produce 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] as

𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓∗[𝑘𝑘𝑘𝑘]. (14)

Since a compressed PRN code sequence is composed of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 PRN code sequences whose code 
phases are 1/(2𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), the ACF output samples, i.e., the time-domain element of 𝐘𝐘𝐘𝐘𝑏𝑏𝑏𝑏 , should be 
down-sampled. The equivalent down-sampling operation in the time-domain is realized by 
taking every (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 1)-th samples and (𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 2)-thsamples of the ACF output for 𝑖𝑖𝑖𝑖 = 0, 1,
⋯,⌊(𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁)/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)⌋. The down-sampling process is to reduce the number of IFFT points for 
computational saving, since IFFT should be performed for every compressed Doppler frequency 
hypotheses. Using 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and assumingmod(𝑀𝑀𝑀𝑀, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0 for an algebraic simplicity, the first 
samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛,ℎ] (15)
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7 
and the second samples of every 𝑣𝑣�𝑐𝑐� samples of 𝑦𝑦� [𝑛𝑛𝑛 𝑛] are 
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where 𝑓𝑓� and 𝑓𝑓� represent the first and second sample sets, respectively, as shown in Fig. 3d. 
Note that 𝑦𝑦��

� [𝑛𝑛𝑛 𝑛] and 𝑦𝑦��
� [𝑛𝑛𝑛 𝑛] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘�  should be divided into 𝑣𝑣� 
segments, and each segment is 𝑣𝑣�𝑐𝑐� times folded before the IFFT operation. The folded first 
sample set in the frequency-domain 
 
 

𝑌𝑌��
�[𝑘𝑘𝑛 𝑛] = � 𝑌𝑌� �𝑘𝑘 𝑘 𝑀𝑀𝑀𝑀

𝑣𝑣�𝑐𝑐�
𝑛 𝑛�

������

���
𝑛 (17)

 
and the folded second sample set in the frequency-domain 
 
 

𝑌𝑌��
�[𝑘𝑘𝑛 𝑛] = � 𝑌𝑌� �𝑘𝑘 𝑘 𝑀𝑀𝑀𝑀

𝑣𝑣�𝑐𝑐�
𝑛 𝑛� 𝑒𝑒�������� ��

�����/(��)
������

���
 (18)
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��

- 7 -

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��

 (16)

where f
1
 and f

2
 represent the first and second sample sets, 

respectively, as shown in Fig. 3d. Note that 
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��

[n,h] and 
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��

[n,h] 

represent the test results of two hypotheses within a sub-

chip. To complete the down-sampling process in Eqs. (15) 

and (16), Ya should be divided into v
n
 segments, and each 

segment is v
n
c

c
 times folded before the IFFT operation. The 

folded first sample set in the frequency-domain
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��

 (17)

and the folded second sample set in the frequency-domain

Fig. 3. Proposed-2: Modified FFT-based BOC-TDCC technique.

(a) Modified BOC-TDCC (b) Code compression

(d) Spectrum segmentation and folding (SSF) (c) Doppler compression

(15)
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��

 (18)

are inverse FFT'd to obtain the first stage result as
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��

 (19)

As in Fig. 3d, the components of yb
f1
 and yb

f2
 are arranged in 

order to find yb
o
 as
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= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

and the second samples of every 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 samples of 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏  [𝑛𝑛𝑛𝑛,ℎ] are

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏[𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛/2,ℎ] 

= �𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 /2)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

, 

= ��𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛)𝑘𝑘𝑘𝑘/𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀−1

𝑘𝑘𝑘𝑘=0

 

= � � � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +
𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑞𝑞𝑞𝑞�/𝑀𝑀𝑀𝑀 
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑞𝑞𝑞𝑞=0

�𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘 /𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1

𝑘𝑘𝑘𝑘=0

, 

(16)

where 𝑓𝑓𝑓𝑓1 and 𝑓𝑓𝑓𝑓2 represent the first and second sample sets, respectively, as shown in Fig. 3d.
Note that 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1

𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] and 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] represent the test results of two hypotheses within a sub-chip. To 

complete the down-sampling process inEqs. (15) and (16), 𝐘𝐘𝐘𝐘𝑎𝑎𝑎𝑎 should be divided into 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
segments, and each segment is 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 times folded before the IFFT operation. The folded first 
sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘, ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

, (17)

and the folded second sample set in the frequency-domain

𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ] = � 𝑌𝑌𝑌𝑌𝑏𝑏𝑏𝑏 �𝑘𝑘𝑘𝑘 +

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,ℎ� 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 �𝑘𝑘𝑘𝑘+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�/(2𝑀𝑀𝑀𝑀)
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑀𝑀𝑀𝑀=0

(18)

are inverse FFT'd to obtain the first stage result as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛, ℎ] = � 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏[𝑘𝑘𝑘𝑘,ℎ]𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 /�𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�

𝑀𝑀𝑀𝑀/(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−1 

𝑘𝑘𝑘𝑘=0

. (19)

As in Fig. 3d, the components of 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 and 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓2

𝑏𝑏𝑏𝑏 are arranged in order to find 𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 as

𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 [𝑛𝑛𝑛𝑛,ℎ] = �mod(𝑛𝑛𝑛𝑛, 2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓1
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��
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+ �mod(𝑛𝑛𝑛𝑛 + 1,2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��, (20)

and each component of 𝐲𝐲𝐲𝐲𝑏𝑏𝑏𝑏 is compared to the first stage detection threshold 𝛾𝛾𝛾𝛾1 as shown in Fig. 
3a.

When a test result for a compressed hypothesis is larger than 𝛾𝛾𝛾𝛾1, the index of the detected 
compressed Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 and the index of the detected compressed code 
phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 are sent to the second stage, where the corresponding 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 neighboring 
individual hypotheses are tested. Denoting 𝑏𝑏𝑏𝑏0 as the compressed frequency hypotheses index of 
𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 whose element passes the decision threshold test, the index of the detected compressed code 
phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 and the index of the detected compressed Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏
can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 = arg max
𝑛𝑛𝑛𝑛
  �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑏𝑏𝑏𝑏0 � 
𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏0,

(21a)
(21b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 ∈ �0,⋯ , �4𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 ∈ �0,⋯ , �𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓
� − 1� , and the indices of the resulting 

individual code phase and Doppler frequency hypotheses to be tested in the second stage are 

𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� + mod�𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 , 2� 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛

2
+ 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝑏𝑏𝑏𝑏 − 1 and 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 + 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 , respectively, where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑏𝑏𝑏𝑏 ∈

{0, . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 1} and 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ �0, . . , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 − 1� are the indices of the individual code phase and Doppler 
frequency hypotheses that constitutes the detected compressed hypothesis in the first stage.

5. PERFORMANCE ANALYSIS

In this section, the computational complexity and performance analysis of the proposed 
technique are explained.

5.1 Computational Complexity

Since the indices of Doppler frequency hypotheses are denoted 𝑎𝑎𝑎𝑎 in the proposed-1 technique, 
we express the code search with the Doppler frequency hypothesis by 𝑎𝑎𝑎𝑎 -th code search. 
Therefore the number of complex multiplications of the 𝑎𝑎𝑎𝑎-th code search in the first stage of the 
proposed-1 technique is

𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 = 2𝑄𝑄𝑄𝑄(1 + log2𝑄𝑄𝑄𝑄). (22)

On the other hand, similar to the proposed-1 technique, the number of complex multiplications of 
𝑏𝑏𝑏𝑏-th code search in the proposed-2 technique is

𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 = �𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 − 1�𝑀𝑀𝑀𝑀 + 2𝑀𝑀𝑀𝑀 +
𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

log2
𝑀𝑀𝑀𝑀

2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
. (23)

And it is known that the number of complex multiplications of the code search in the 

 (20)

and each component of yb is compared to the first stage 

detection threshold γ
1
 as shown in Fig. 3a.

When a test result for a compressed hypothesis is larger 

than γ
1
, the index of the detected compressed Doppler 

frequency hypothesis f b
y
 and the index of the detected 

compressed code phase hypothesis τb
y
  are sent to the second 

stage, where the corresponding c
c
c

f
 neighboring individual 

hypotheses are tested. Denoting b
0
 as the compressed 

frequency hypotheses index of yb
o
 whose element passes 

the decision threshold test, the index of the detected 

compressed code phase hypothesis τb
y
 and the index of the 

detected compressed Doppler frequency hypothesis fb
y
 can 

be expressed as
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+ �mod(𝑛𝑛𝑛𝑛 + 1,2)𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓2
𝑏𝑏𝑏𝑏 ��

𝑛𝑛𝑛𝑛
2
� , ℎ��, (20)

and each component of 𝐲𝐲𝐲𝐲𝑏𝑏𝑏𝑏 is compared to the first stage detection threshold 𝛾𝛾𝛾𝛾1 as shown in Fig. 
3a.

When a test result for a compressed hypothesis is larger than 𝛾𝛾𝛾𝛾1, the index of the detected 
compressed Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 and the index of the detected compressed code 
phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 are sent to the second stage, where the corresponding 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 neighboring 
individual hypotheses are tested. Denoting 𝑏𝑏𝑏𝑏0 as the compressed frequency hypotheses index of 
𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 whose element passes the decision threshold test, the index of the detected compressed code 
phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 and the index of the detected compressed Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏
can be expressed as

𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 = arg max
𝑛𝑛𝑛𝑛
  �𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓

𝑏𝑏𝑏𝑏0 � 
𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏0,

(21a)
(21b)

where 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 ∈ �0,⋯ , �4𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 ∈ �0,⋯ , �𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓
� − 1� , and the indices of the resulting 

individual code phase and Doppler frequency hypotheses to be tested in the second stage are 

𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� + mod�𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 , 2� 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛
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Since the indices of Doppler frequency hypotheses are denoted 𝑎𝑎𝑎𝑎 in the proposed-1 technique, 
we express the code search with the Doppler frequency hypothesis by 𝑎𝑎𝑎𝑎 -th code search. 
Therefore the number of complex multiplications of the 𝑎𝑎𝑎𝑎-th code search in the first stage of the 
proposed-1 technique is

𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 = 2𝑄𝑄𝑄𝑄(1 + log2𝑄𝑄𝑄𝑄). (22)

On the other hand, similar to the proposed-1 technique, the number of complex multiplications of 
𝑏𝑏𝑏𝑏-th code search in the proposed-2 technique is
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𝑀𝑀𝑀𝑀

2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
. (23)

And it is known that the number of complex multiplications of the code search in the 

, 

and the indices of the resulting individual code phase and 

Doppler frequency hypotheses to be tested in the second 

stage are 
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and each component of 𝐲𝐲𝐲𝐲𝑏𝑏𝑏𝑏 is compared to the first stage detection threshold 𝛾𝛾𝛾𝛾1 as shown in Fig. 
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𝑏𝑏𝑏𝑏0 � 
𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏0,

(21a)
(21b)
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� − 1� and 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 ∈ �0,⋯ , �𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓
� − 1� , and the indices of the resulting 

individual code phase and Doppler frequency hypotheses to be tested in the second stage are 
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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Since the indices of Doppler frequency hypotheses are denoted 𝑎𝑎𝑎𝑎 in the proposed-1 technique, 
we express the code search with the Doppler frequency hypothesis by 𝑎𝑎𝑎𝑎 -th code search. 
Therefore the number of complex multiplications of the 𝑎𝑎𝑎𝑎-th code search in the first stage of the 
proposed-1 technique is

𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 = 2𝑄𝑄𝑄𝑄(1 + log2𝑄𝑄𝑄𝑄). (22)

On the other hand, similar to the proposed-1 technique, the number of complex multiplications of 
𝑏𝑏𝑏𝑏-th code search in the proposed-2 technique is

𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 = �𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 − 1�𝑀𝑀𝑀𝑀 + 2𝑀𝑀𝑀𝑀 +
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And it is known that the number of complex multiplications of the code search in the 
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R2a= Rsa[ ]Q( )3mF/2 + 1 +1:Q( )3mF/2 + 2 ,

where Q  is the number of FFT−points and is the smallest positive integer that is a power of 2 
larger than 2N (Yang 2001), mF= 2log2M−log2Q−1−1. Same as the process of an incoming signal, 
FFT-transformed locally generated signal G is also captured to generate BPSK−like signal as

Gh= G[ ]Q( )3mF/2 + 1 +1:Q( )3mF/2 + 2 . (6)

To correlate the incoming signal and locally generated signal, R1a [k]  and R2a [k]  are multiplied 
with the complex conjugate of Gh [k] to produce Ya [k] as

Y1a[ ]k = R1a[ ]k Gh∗[ ]k ,
Y2a[k] = R2a[k]Gh∗[k],

(7a)
(7b)

and Y1a and Y2a are IFFT transformed to get

y1a[ ]n = ∑
k=0

Q−1
Y1a[ ]k ej2πkn/Q ,

y2a[ ]n = ∑
k=0

Q−1
Y2a[ ]k ej2πkn/Q ,

(8a)

(8b)

and squares of y1a and y2a are summed as

yoa[ ]n = || ||y1a[ ]n 2+|| ||y2a[ ]n 2. (9)

Denoting a0  as the frequency hypotheses index of yoa  whose element is larger than the decision 
threshold, γ1 , the index of the detected code phase hypothesis τya  and the index of the detected 
Doppler frequency hypothesis fya can be expressed as

τya= argmax
n

 || ||yoa0

fya= a0,
(10a)
(10b)

where τya∈ { }0, ⋯ ,⎡⎣
⎤
⎦

4mscQN
mcM −1  and fya∈ { }0, ⋯ ,Fn−1 , Fn is the number of individual Doppler 

frequency hypotheses, and the corresponding individual code phase to be tested in the second 
stage exploiting conventional correlators is τya( )2msc/mc +msa, where msa∈ { }0, ⋯ ,2 msc/mc−1  
is the index of the corresponding individual code phase hypotheses that constitute the detected 

{0,...,c
c
−1} and nb

s 
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larger than 2N (Yang 2001), mF= 2log2M−log2Q−1−1. Same as the process of an incoming signal, 
FFT-transformed locally generated signal G is also captured to generate BPSK−like signal as

Gh= G[ ]Q( )3mF/2 + 1 +1:Q( )3mF/2 + 2 . (6)

To correlate the incoming signal and locally generated signal, R1a [k]  and R2a [k]  are multiplied 
with the complex conjugate of Gh [k] to produce Ya [k] as
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threshold, γ1 , the index of the detected code phase hypothesis τya  and the index of the detected 
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−1} are the 

indices of the individual code phase and Doppler frequency 

hypotheses that constitutes the detected compressed 

hypothesis in the first stage.

5. PErForMAncE AnALYSIS

In this section, the computational complexity and 

performance analysis of the proposed technique are 

explained.

5.1 Computational Complexity

Since the indices of Doppler frequency hypotheses are 

denoted a in the proposed-1 technique, we express the code 

search with the Doppler frequency hypothesis by a-th code 

search. Therefore the number of complex multiplications 

of the a-th code search in the first stage of the proposed-1 

technique is

 Na
f =2Q(1+log2Q). (22)

On the other hand, similar to the proposed-1 technique, 

the number of complex multiplications of b-th code search 

in the proposed-2 technique is
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and each component of 𝐲𝐲𝐲𝐲𝑏𝑏𝑏𝑏 is compared to the first stage detection threshold 𝛾𝛾𝛾𝛾1 as shown in Fig. 
3a.

When a test result for a compressed hypothesis is larger than 𝛾𝛾𝛾𝛾1, the index of the detected 
compressed Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 and the index of the detected compressed code 
phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 are sent to the second stage, where the corresponding 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 neighboring 
individual hypotheses are tested. Denoting 𝑏𝑏𝑏𝑏0 as the compressed frequency hypotheses index of 
𝐲𝐲𝐲𝐲𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏 whose element passes the decision threshold test, the index of the detected compressed code 
phase hypothesis 𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 and the index of the detected compressed Doppler frequency hypothesis 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏
can be expressed as
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𝑏𝑏𝑏𝑏 − 1 and 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 + 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 , respectively, where 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑏𝑏𝑏𝑏 ∈

{0, . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 1} and 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ �0, . . , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 − 1� are the indices of the individual code phase and Doppler 
frequency hypotheses that constitutes the detected compressed hypothesis in the first stage.

5. PERFORMANCE ANALYSIS

In this section, the computational complexity and performance analysis of the proposed 
technique are explained.

5.1 Computational Complexity

Since the indices of Doppler frequency hypotheses are denoted 𝑎𝑎𝑎𝑎 in the proposed-1 technique, 
we express the code search with the Doppler frequency hypothesis by 𝑎𝑎𝑎𝑎 -th code search. 
Therefore the number of complex multiplications of the 𝑎𝑎𝑎𝑎-th code search in the first stage of the 
proposed-1 technique is

𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 = 2𝑄𝑄𝑄𝑄(1 + log2𝑄𝑄𝑄𝑄). (22)

On the other hand, similar to the proposed-1 technique, the number of complex multiplications of 
𝑏𝑏𝑏𝑏-th code search in the proposed-2 technique is
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2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
. (23)

And it is known that the number of complex multiplications of the code search in the 

 (23)

And it is known that the number of complex multiplications 

of the code search in the conventional FFT-based BOC 

acquisition technique (Borre et al. 2007) is

 Nv=M+M log2 M. (24)

The computation in the second stage for the proposed-1 

and proposed-2 technique can be expressed as
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conventional FFT-based BOC acquisition technique(Borre et al. 2007) is

𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣 = 𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀log2𝑀𝑀𝑀𝑀. (24)

The computation in the second stage for the proposed-1 and proposed-2 technique can be 
expressed as

𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁(1 + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠), 
𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓�,

(25a)
(25b)

respectively. The total computational complexity of the proposed and the conventional FFT-
based BOC acquisition technique (Borre et al. 2007)are analyzed and simulated in Section 6 and 
Section 7, respectively.

5.2 Mean Fine Acquisition Computation

In order to verify the performance of the proposed technique, thorough theoretical analysis is 
introduced in this section. Since the performance of the BPSK-like technique is already 
introduced inFishman&Betz(2000), we provide the performance analysis of the modified FFT-
based BOC-TDCC (proposed-2) technique in this section.

From Kim & Kong (2014a), the noise power, 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 , due to the compressed code phase 
hypothesis, is a function of 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 as

𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 = �
4 −𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 1

16 − 10 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 1
64 − 84 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 8 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 3,

 (26)

and 3, 7, 14, 27, 109/3 for [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠] = [2,1], [4,1], [8,1], [8,2], and[8,3], respectively, and 
the noise power due to the compressed Doppler frequency hypothesis denoted by 𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2 is 2 + 4

𝜋𝜋𝜋𝜋
for 

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 2, 3 + 8
𝜋𝜋𝜋𝜋

for 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 3, and 4 + 32
3𝜋𝜋𝜋𝜋

for 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 4(Kong 2013), where the noise of the first stage 
IFFT output is 𝑉𝑉𝑉𝑉1 = 𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 , and that of the second stage output is 𝑉𝑉𝑉𝑉2 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 . And the 
signal amplitude of 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓

𝑏𝑏𝑏𝑏0�𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏� is denoted as 𝑆𝑆𝑆𝑆1 defined inKim & Kong (2014a).
To test if the first stage acquisition is successful, we use the maximum-to-the second 

maximum ratio (MTMR)-based decision strategy introduced inGeiger et al. (2010), where the 
ratio of MTMR of the parallel search output is compared to a decision threshold 𝛾𝛾𝛾𝛾1. Then, the 
detection probability, miss probability, false alarm probability in the incorrect Doppler frequency 
hypothesis, and false alarm probability in the correct Doppler frequency hypothesis are

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 = 𝑒𝑒𝑒𝑒−
𝑠𝑠𝑠𝑠1

2

2 � 
∞

𝑞𝑞𝑞𝑞=0

�
(𝑆𝑆𝑆𝑆1

2)𝑞𝑞𝑞𝑞

2𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞! 𝑞𝑞𝑞𝑞+2𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞+1��−𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 , 𝛾𝛾𝛾𝛾1𝟏𝟏𝟏𝟏𝑞𝑞𝑞𝑞+1�; (𝛾𝛾𝛾𝛾1 + 1)𝟏𝟏𝟏𝟏𝑞𝑞𝑞𝑞+1; 1�� 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 = 1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1 = (𝑁𝑁𝑁𝑁1

2 − 𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1, 1 + 𝛾𝛾𝛾𝛾1),

(27a)

(27b)
(27c)

 (25a)
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conventional FFT-based BOC acquisition technique(Borre et al. 2007) is

𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣 = 𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀log2𝑀𝑀𝑀𝑀. (24)

The computation in the second stage for the proposed-1 and proposed-2 technique can be 
expressed as

𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁(1 + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠), 
𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓�,

(25a)
(25b)

respectively. The total computational complexity of the proposed and the conventional FFT-
based BOC acquisition technique (Borre et al. 2007)are analyzed and simulated in Section 6 and 
Section 7, respectively.

5.2 Mean Fine Acquisition Computation

In order to verify the performance of the proposed technique, thorough theoretical analysis is 
introduced in this section. Since the performance of the BPSK-like technique is already 
introduced inFishman&Betz(2000), we provide the performance analysis of the modified FFT-
based BOC-TDCC (proposed-2) technique in this section.

From Kim & Kong (2014a), the noise power, 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 , due to the compressed code phase 
hypothesis, is a function of 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 as

𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 = �
4 −𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 1

16 − 10 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 1
64 − 84 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 8 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 3,

 (26)

and 3, 7, 14, 27, 109/3 for [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠] = [2,1], [4,1], [8,1], [8,2], and[8,3], respectively, and 
the noise power due to the compressed Doppler frequency hypothesis denoted by 𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2 is 2 + 4

𝜋𝜋𝜋𝜋
for 

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 2, 3 + 8
𝜋𝜋𝜋𝜋

for 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 3, and 4 + 32
3𝜋𝜋𝜋𝜋

for 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 4(Kong 2013), where the noise of the first stage 
IFFT output is 𝑉𝑉𝑉𝑉1 = 𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 , and that of the second stage output is 𝑉𝑉𝑉𝑉2 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 . And the 
signal amplitude of 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓

𝑏𝑏𝑏𝑏0�𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏� is denoted as 𝑆𝑆𝑆𝑆1 defined inKim & Kong (2014a).
To test if the first stage acquisition is successful, we use the maximum-to-the second 

maximum ratio (MTMR)-based decision strategy introduced inGeiger et al. (2010), where the 
ratio of MTMR of the parallel search output is compared to a decision threshold 𝛾𝛾𝛾𝛾1. Then, the 
detection probability, miss probability, false alarm probability in the incorrect Doppler frequency 
hypothesis, and false alarm probability in the correct Doppler frequency hypothesis are

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 = 𝑒𝑒𝑒𝑒−
𝑠𝑠𝑠𝑠1

2

2 � 
∞

𝑞𝑞𝑞𝑞=0

�
(𝑆𝑆𝑆𝑆1

2)𝑞𝑞𝑞𝑞

2𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞! 𝑞𝑞𝑞𝑞+2𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞+1��−𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 , 𝛾𝛾𝛾𝛾1𝟏𝟏𝟏𝟏𝑞𝑞𝑞𝑞+1�; (𝛾𝛾𝛾𝛾1 + 1)𝟏𝟏𝟏𝟏𝑞𝑞𝑞𝑞+1; 1�� 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 = 1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1 = (𝑁𝑁𝑁𝑁1

2 − 𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1, 1 + 𝛾𝛾𝛾𝛾1),

(27a)

(27b)
(27c)

 (25b)

respectively. The total computational complexity of the 

proposed and the conventional FFT-based BOC acquisition 

technique (Borre et al. 2007) are analyzed and simulated in 

Section 6 and Section 7, respectively.

5.2 Mean Fine Acquisition Computation

In order to verify the performance of the proposed 

technique, thorough theoretical analysis is introduced 

in this section. Since the performance of the BPSK-like 

technique is already introduced in Fishman & Betz (2000), 

we provide the performance analysis of the modified FFT-

based BOC-TDCC (proposed-2) technique in this section.

From Kim & Kong (2014a), the noise power, σ2
P
 , due to the 

compressed code phase hypothesis, is a function of m
sc

/m
c
 

and c
c
 as
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 𝑁𝑁�� = 2𝑄𝑄�1 + log�𝑄𝑄�. (22)
 
On the other hand, similar to the proposed-1 technique, the number of complex multiplications of 
𝑏𝑏-th code search in the proposed-2 technique is 
 
 𝑁𝑁�� = �𝑐𝑐� − 1�𝑀𝑀 + 2𝑀𝑀 + 𝑀𝑀

𝑐𝑐�
log�

𝑀𝑀
2𝑐𝑐�

. (23)

 
And it is known that the number of complex multiplications of the code search in the 
conventional FFT-based BOC acquisition technique(Borre et al. 2007) is 
 
 𝑁𝑁� = 𝑀𝑀 + 𝑀𝑀log�𝑀𝑀. (24)
 
The computation in the second stage for the proposed-1 and proposed-2 technique can be 
expressed as 
 
 𝑁𝑁�� = 𝑣𝑣𝑁𝑁�1 + 𝑚𝑚��/𝑚𝑚��, 

𝑁𝑁�� = 𝑣𝑣𝑁𝑁�𝑚𝑚���𝑐𝑐�, 𝑐𝑐�� + 𝑐𝑐�𝑐𝑐��, 
(25a)
(25b)

 
respectively. The total computational complexity of the proposed and the conventional FFT-
based BOC acquisition technique (Borre et al. 2007)are analyzed and simulated in Section 6 and 
Section 7, respectively. 
 
5.2 Mean Fine Acquisition Computation 
 
In order to verify the performance of the proposed technique, thorough theoretical analysis is 
introduced in this section. Since the performance of the BPSK-like technique is already 
introduced inFishman&Betz(2000), we provide the performance analysis of the modified FFT-
based BOC-TDCC (proposed-2) technique in this section. 

From Kim & Kong (2014a), the noise power, 𝜎𝜎�� , due to the compressed code phase 
hypothesis, is a function of 𝑚𝑚��/𝑚𝑚� and 𝑐𝑐� as 
 
 

𝜎𝜎�� = �
 4 − 𝑚𝑚�/𝑚𝑚��,               for 𝑐𝑐� = 2 and 𝑚𝑚��/𝑚𝑚� > 1

16 − 10 𝑚𝑚�/𝑚𝑚��, for 𝑐𝑐� = 4 and 𝑚𝑚��/𝑚𝑚� > 1
64 − 84 𝑚𝑚�/𝑚𝑚��, for 𝑐𝑐� = 8 and 𝑚𝑚��/𝑚𝑚� > 3,

 (26)

 
and 3, 7, 14, 27, 109/3 for �𝑐𝑐�, 𝑚𝑚��/𝑚𝑚�� = [2,1], [4,1], [8,1], [8,2], and[8,3], respectively, and 
the noise power due to the compressed Doppler frequency hypothesis denoted by 𝜎𝜎�� is 2 + �

� for 

𝑐𝑐� = 2, 3 + �
� for 𝑐𝑐� = 3, and 4 + ��

�� for 𝑐𝑐� = 4(Kong 2013), where the noise of the first stage 
IFFT output is 𝑉𝑉� = 𝜎𝜎��𝜎𝜎��𝑣𝑣𝑁𝑁𝑁𝑁�, and that of the second stage output is 𝑉𝑉� = 𝑣𝑣𝑁𝑁𝑁𝑁�. And the 
signal amplitude of 𝑦𝑦�

������� is denoted as 𝑆𝑆� defined inKim & Kong (2014a). 
To test if the first stage acquisition is successful, we use the maximum-to-the second 

maximum ratio (MTMR)-based decision strategy introduced inGeiger et al. (2010), where the 

(26)
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and 3, 7, 14, 27, 109/3 for [c
c
,m

sc
/m

c
]= [2,1], [4,1], [8,1], [8,2], 

and [8,3], respectively, and the noise power due to the 

compressed Doppler frequency hypothesis denoted by σ2
f
  

is 2+
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introduced in Fishman & Betz (2000), we provide the performance analysis of the modified FFT-
based BOC-TDCC (proposed-2) technique in this section.

From Kim & Kong (2014a), the noise power, σP2 , due to the compressed code phase 
hypothesis, is a function of msc/mc and cc as

σP2={ 4 − mc/msc,  &for cc= 2 and msc/mc> 1
16 − 10 mc/msc,  &for cc= 4 and msc/mc> 1
64 − 84 mc/msc,  &for cc= 8 and msc/mc> 3,

(26)

and 3, 7, 14, 27, 109/3 for [ ]cc,msc/mc = [2,1], [4,1], [8,1], [8,2], and [8,3], respectively, and the 

noise power due to the compressed Doppler frequency hypothesis denoted by σf2  is 2 + 4
π  for 

cf= 2 , 3 + 8
π  for cf= 3 , and 4 + 32

3π  for cf= 4  (Kong 2013), where the noise of the first stage 

IFFT output is V1= σf2σP2vNN0, and that of the second stage output is V2= vNN0. And the signal 
amplitude of yob0[ ]τyb  is denoted as S1 defined in Kim & Kong (2014a).

To test if the first stage acquisition is successful, we use the maximum-to-the second 
maximum ratio (MTMR)-based decision strategy introduced in Geiger et al. (2010), where the 
ratio of MTMR of the parallel search output is compared to a decision threshold γ1 . Then, the 
detection probability, miss probability, false alarm probability in the incorrect Doppler frequency 
hypothesis, and false alarm probability in the correct Doppler frequency hypothesis are

PD1= e− s1
2

2 ∑
q=0

∞
  ⎡⎣

⎤
⎦

( )S12 q

2qq!  q+2
F

q+1
( )[ ]−Nr,γ11q+1 ;( )γ1+1 1q+1;1

PM1 = 1 − PD1−Pf1

PF1= ( )N12−N1 B( )N1−1, 1 + γ1 ,

(27a)

(27b)
(27c)

and

Pf1={ 0,  &for high SNR
( )N12−N1 B( )N1−1,1 + γ1 ,  &for low SNR, (28)

respectively, where B( ⋅ , ⋅ )  is the Beta function (Papoulis & Pillai 2002), 

 p
Fq( )[ ]a1, ⋯ ,ap ;[ ]b1, ⋯ ,bq ;1  is hypergeometric series, and 1n  is an 1−by−n matrix of ones. In 

the second stage, the detection, miss, and false alarm probabilities are readily available from the 
literature such as (Kong 2013)

PD2= ∑
n=0

N2−1
( − 1)n
n + 1

⎛
⎝

⎞
⎠

N2−1
n exp ⎛

⎝
⎞
⎠

− nS22

( )n + 1 V2
Q⎛

⎝

⎞

⎠

2S22

( )n + 1 V2
, 2( )n + 1 γ2

V2
, (29a)

 for c
f
=2, 3+
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introduced in Fishman & Betz (2000), we provide the performance analysis of the modified FFT-
based BOC-TDCC (proposed-2) technique in this section.

From Kim & Kong (2014a), the noise power, σP2 , due to the compressed code phase 
hypothesis, is a function of msc/mc and cc as

σP2={ 4 − mc/msc,  &for cc= 2 and msc/mc> 1
16 − 10 mc/msc,  &for cc= 4 and msc/mc> 1
64 − 84 mc/msc,  &for cc= 8 and msc/mc> 3,

(26)

and 3, 7, 14, 27, 109/3 for [ ]cc,msc/mc = [2,1], [4,1], [8,1], [8,2], and [8,3], respectively, and the 

noise power due to the compressed Doppler frequency hypothesis denoted by σf2  is 2 + 4
π  for 

cf= 2 , 3 + 8
π  for cf= 3 , and 4 + 32

3π  for cf= 4  (Kong 2013), where the noise of the first stage 

IFFT output is V1= σf2σP2vNN0, and that of the second stage output is V2= vNN0. And the signal 
amplitude of yob0[ ]τyb  is denoted as S1 defined in Kim & Kong (2014a).

To test if the first stage acquisition is successful, we use the maximum-to-the second 
maximum ratio (MTMR)-based decision strategy introduced in Geiger et al. (2010), where the 
ratio of MTMR of the parallel search output is compared to a decision threshold γ1 . Then, the 
detection probability, miss probability, false alarm probability in the incorrect Doppler frequency 
hypothesis, and false alarm probability in the correct Doppler frequency hypothesis are
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respectively, where B( ⋅ , ⋅ )  is the Beta function (Papoulis & Pillai 2002), 

 p
Fq( )[ ]a1, ⋯ ,ap ;[ ]b1, ⋯ ,bq ;1  is hypergeometric series, and 1n  is an 1−by−n matrix of ones. In 

the second stage, the detection, miss, and false alarm probabilities are readily available from the 
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respectively, where B( ⋅ , ⋅ )  is the Beta function (Papoulis & Pillai 2002), 
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1
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probability in the correct Doppler frequency hypothesis are
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conventional FFT-based BOC acquisition technique(Borre et al. 2007) is

𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣 = 𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀log2𝑀𝑀𝑀𝑀. (24)

The computation in the second stage for the proposed-1 and proposed-2 technique can be 
expressed as

𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁(1 + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠), 
𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓�,

(25a)
(25b)

respectively. The total computational complexity of the proposed and the conventional FFT-
based BOC acquisition technique (Borre et al. 2007)are analyzed and simulated in Section 6 and 
Section 7, respectively.

5.2 Mean Fine Acquisition Computation

In order to verify the performance of the proposed technique, thorough theoretical analysis is 
introduced in this section. Since the performance of the BPSK-like technique is already 
introduced inFishman&Betz(2000), we provide the performance analysis of the modified FFT-
based BOC-TDCC (proposed-2) technique in this section.

From Kim & Kong (2014a), the noise power, 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 , due to the compressed code phase 
hypothesis, is a function of 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 as

𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 = �
4 −𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 1

16 − 10 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 1
64 − 84 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 8 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 3,

 (26)

and 3, 7, 14, 27, 109/3 for [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠] = [2,1], [4,1], [8,1], [8,2], and[8,3], respectively, and 
the noise power due to the compressed Doppler frequency hypothesis denoted by 𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2 is 2 + 4

𝜋𝜋𝜋𝜋
for 

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 2, 3 + 8
𝜋𝜋𝜋𝜋

for 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 3, and 4 + 32
3𝜋𝜋𝜋𝜋

for 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 4(Kong 2013), where the noise of the first stage 
IFFT output is 𝑉𝑉𝑉𝑉1 = 𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 , and that of the second stage output is 𝑉𝑉𝑉𝑉2 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 . And the 
signal amplitude of 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓

𝑏𝑏𝑏𝑏0�𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏� is denoted as 𝑆𝑆𝑆𝑆1 defined inKim & Kong (2014a).
To test if the first stage acquisition is successful, we use the maximum-to-the second 

maximum ratio (MTMR)-based decision strategy introduced inGeiger et al. (2010), where the 
ratio of MTMR of the parallel search output is compared to a decision threshold 𝛾𝛾𝛾𝛾1. Then, the 
detection probability, miss probability, false alarm probability in the incorrect Doppler frequency 
hypothesis, and false alarm probability in the correct Doppler frequency hypothesis are

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 = 𝑒𝑒𝑒𝑒−
𝑠𝑠𝑠𝑠1

2

2 � 
∞

𝑞𝑞𝑞𝑞=0

�
(𝑆𝑆𝑆𝑆1

2)𝑞𝑞𝑞𝑞

2𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞! 𝑞𝑞𝑞𝑞+2𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞+1��−𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 , 𝛾𝛾𝛾𝛾1𝟏𝟏𝟏𝟏𝑞𝑞𝑞𝑞+1�; (𝛾𝛾𝛾𝛾1 + 1)𝟏𝟏𝟏𝟏𝑞𝑞𝑞𝑞+1; 1�� 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 = 1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1 = (𝑁𝑁𝑁𝑁1

2 − 𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1, 1 + 𝛾𝛾𝛾𝛾1),

(27a)

(27b)
(27c)
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conventional FFT-based BOC acquisition technique(Borre et al. 2007) is

𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣 = 𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀log2𝑀𝑀𝑀𝑀. (24)

The computation in the second stage for the proposed-1 and proposed-2 technique can be 
expressed as
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(25a)
(25b)

respectively. The total computational complexity of the proposed and the conventional FFT-
based BOC acquisition technique (Borre et al. 2007)are analyzed and simulated in Section 6 and 
Section 7, respectively.

5.2 Mean Fine Acquisition Computation

In order to verify the performance of the proposed technique, thorough theoretical analysis is 
introduced in this section. Since the performance of the BPSK-like technique is already 
introduced inFishman&Betz(2000), we provide the performance analysis of the modified FFT-
based BOC-TDCC (proposed-2) technique in this section.

From Kim & Kong (2014a), the noise power, 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 , due to the compressed code phase 
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To test if the first stage acquisition is successful, we use the maximum-to-the second 
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(27a)

(27b)
(27c)

 
    (27a)
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conventional FFT-based BOC acquisition technique(Borre et al. 2007) is

𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣 = 𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀log2𝑀𝑀𝑀𝑀. (24)

The computation in the second stage for the proposed-1 and proposed-2 technique can be 
expressed as

𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁(1 + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠), 
𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓�,

(25a)
(25b)

respectively. The total computational complexity of the proposed and the conventional FFT-
based BOC acquisition technique (Borre et al. 2007)are analyzed and simulated in Section 6 and 
Section 7, respectively.

5.2 Mean Fine Acquisition Computation

In order to verify the performance of the proposed technique, thorough theoretical analysis is 
introduced in this section. Since the performance of the BPSK-like technique is already 
introduced inFishman&Betz(2000), we provide the performance analysis of the modified FFT-
based BOC-TDCC (proposed-2) technique in this section.

From Kim & Kong (2014a), the noise power, 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 , due to the compressed code phase 
hypothesis, is a function of 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 as

𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 = �
4 −𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 1

16 − 10 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 1
64 − 84 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 8 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 3,

 (26)

and 3, 7, 14, 27, 109/3 for [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠] = [2,1], [4,1], [8,1], [8,2], and[8,3], respectively, and 
the noise power due to the compressed Doppler frequency hypothesis denoted by 𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2 is 2 + 4

𝜋𝜋𝜋𝜋
for 

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 2, 3 + 8
𝜋𝜋𝜋𝜋

for 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 3, and 4 + 32
3𝜋𝜋𝜋𝜋

for 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 4(Kong 2013), where the noise of the first stage 
IFFT output is 𝑉𝑉𝑉𝑉1 = 𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 , and that of the second stage output is 𝑉𝑉𝑉𝑉2 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 . And the 
signal amplitude of 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓

𝑏𝑏𝑏𝑏0�𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏� is denoted as 𝑆𝑆𝑆𝑆1 defined inKim & Kong (2014a).
To test if the first stage acquisition is successful, we use the maximum-to-the second 

maximum ratio (MTMR)-based decision strategy introduced inGeiger et al. (2010), where the 
ratio of MTMR of the parallel search output is compared to a decision threshold 𝛾𝛾𝛾𝛾1. Then, the 
detection probability, miss probability, false alarm probability in the incorrect Doppler frequency 
hypothesis, and false alarm probability in the correct Doppler frequency hypothesis are

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 = 𝑒𝑒𝑒𝑒−
𝑠𝑠𝑠𝑠1

2

2 � 
∞

𝑞𝑞𝑞𝑞=0

�
(𝑆𝑆𝑆𝑆1

2)𝑞𝑞𝑞𝑞

2𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞! 𝑞𝑞𝑞𝑞+2𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞+1��−𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 , 𝛾𝛾𝛾𝛾1𝟏𝟏𝟏𝟏𝑞𝑞𝑞𝑞+1�; (𝛾𝛾𝛾𝛾1 + 1)𝟏𝟏𝟏𝟏𝑞𝑞𝑞𝑞+1; 1�� 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 = 1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1 = (𝑁𝑁𝑁𝑁1

2 − 𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1, 1 + 𝛾𝛾𝛾𝛾1),

(27a)

(27b)
(27c)

 (27b)
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conventional FFT-based BOC acquisition technique(Borre et al. 2007) is

𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣 = 𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀log2𝑀𝑀𝑀𝑀. (24)

The computation in the second stage for the proposed-1 and proposed-2 technique can be 
expressed as

𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁(1 + 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠), 
𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓� + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓�,

(25a)
(25b)

respectively. The total computational complexity of the proposed and the conventional FFT-
based BOC acquisition technique (Borre et al. 2007)are analyzed and simulated in Section 6 and 
Section 7, respectively.

5.2 Mean Fine Acquisition Computation

In order to verify the performance of the proposed technique, thorough theoretical analysis is 
introduced in this section. Since the performance of the BPSK-like technique is already 
introduced inFishman&Betz(2000), we provide the performance analysis of the modified FFT-
based BOC-TDCC (proposed-2) technique in this section.

From Kim & Kong (2014a), the noise power, 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 , due to the compressed code phase 
hypothesis, is a function of 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 as

𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2 = �
4 −𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 1

16 − 10 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 1
64 − 84 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 8 and 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 > 3,

 (26)

and 3, 7, 14, 27, 109/3 for [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠] = [2,1], [4,1], [8,1], [8,2], and[8,3], respectively, and 
the noise power due to the compressed Doppler frequency hypothesis denoted by 𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2 is 2 + 4

𝜋𝜋𝜋𝜋
for 

𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 2, 3 + 8
𝜋𝜋𝜋𝜋

for 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 3, and 4 + 32
3𝜋𝜋𝜋𝜋

for 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 = 4(Kong 2013), where the noise of the first stage 
IFFT output is 𝑉𝑉𝑉𝑉1 = 𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃2𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 , and that of the second stage output is 𝑉𝑉𝑉𝑉2 = 𝑣𝑣𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 . And the 
signal amplitude of 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓

𝑏𝑏𝑏𝑏0�𝜏𝜏𝜏𝜏𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏� is denoted as 𝑆𝑆𝑆𝑆1 defined inKim & Kong (2014a).
To test if the first stage acquisition is successful, we use the maximum-to-the second 

maximum ratio (MTMR)-based decision strategy introduced inGeiger et al. (2010), where the 
ratio of MTMR of the parallel search output is compared to a decision threshold 𝛾𝛾𝛾𝛾1. Then, the 
detection probability, miss probability, false alarm probability in the incorrect Doppler frequency 
hypothesis, and false alarm probability in the correct Doppler frequency hypothesis are

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 = 𝑒𝑒𝑒𝑒−
𝑠𝑠𝑠𝑠1

2

2 � 
∞

𝑞𝑞𝑞𝑞=0

�
(𝑆𝑆𝑆𝑆1

2)𝑞𝑞𝑞𝑞

2𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞! 𝑞𝑞𝑞𝑞+2𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞+1��−𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟 , 𝛾𝛾𝛾𝛾1𝟏𝟏𝟏𝟏𝑞𝑞𝑞𝑞+1�; (𝛾𝛾𝛾𝛾1 + 1)𝟏𝟏𝟏𝟏𝑞𝑞𝑞𝑞+1; 1�� 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 = 1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1 = (𝑁𝑁𝑁𝑁1

2 − 𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1, 1 + 𝛾𝛾𝛾𝛾1),

(27a)

(27b)
(27c) (27c)

and
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as

 (28)

respectively, where B(∙,∙) is the Beta function (Papoulis & 

Pillai 2002), 
p
F

q
([a

1
,…,a

p
];[b

1
,…,b

q
];1) is hypergeometric 

series, and 1
n
 is an 1-by-n matrix of ones. In the second 

stage, the detection, miss, and false alarm probabilities are 

readily available from the literature such as (Kong 2013)
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as

  (29a)
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as

 (29b)
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as

 (29c)

where N
2
=c

c
c

f
..

The correct hypothesis detection, the correct hypothesis 

missed, and the incorrect hypothesis branch transfer 

functions related to the computational complexity in the 

acquisition process can be derived as (Viterbi 1995, Kim & 

Kong 2014b)
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as

 (30a)
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as

            

- 10 -

and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as

 (30b)
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as

 (30c)

respectively, where N
p
 is the penalty computations required 

for the verification process. Exploiting the analysis in 

Viterbi (1995), the overall transfer function related to the 

computational complexity in the proposed technique is
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and

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓1 = �
0, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 ℎ𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔ℎ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(𝑁𝑁𝑁𝑁1
2 −𝑁𝑁𝑁𝑁1)𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁1 − 1,1 + 𝛾𝛾𝛾𝛾1), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,

 (28)

respectively, where 𝐵𝐵𝐵𝐵(⋅,⋅) is the Beta function 
(Papoulis&Pillai2002), 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞��𝑎𝑎𝑎𝑎1,⋯ ,𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝�; �𝑏𝑏𝑏𝑏1,⋯ , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�; 1� is hypergeometric series, and 𝟏𝟏𝟏𝟏𝑛𝑛𝑛𝑛 is an 
1-by-n matrix of ones.In the second stage, the detection, miss, and false alarm probabilities are 
readily available from the literature such as (Kong 2013)

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2 = �
(−1)𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛 + 1
�𝑁𝑁𝑁𝑁2 − 1

𝑛𝑛𝑛𝑛 � exp�−
𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆2

2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
�𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

(𝑛𝑛𝑛𝑛 + 1)𝑉𝑉𝑉𝑉2
,�

2(𝑛𝑛𝑛𝑛 + 1)𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�

𝑁𝑁𝑁𝑁2−1

𝑛𝑛𝑛𝑛=0

, 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀2 = �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2−1
�1 − 𝑄𝑄𝑄𝑄��

2𝑆𝑆𝑆𝑆2
2

𝑉𝑉𝑉𝑉2
,�

2𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
�� , 

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 = 1 − �1 − exp �−
𝛾𝛾𝛾𝛾2

𝑉𝑉𝑉𝑉2
��

𝑁𝑁𝑁𝑁2
,

(29a)

(29b)

(29c)

where 𝑁𝑁𝑁𝑁2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 .
The correct hypothesis detection, the correct hypothesis missed, and the incorrect 

hypothesis branch transfer functions related to the computational complexity in the acquisition 
process can be derived as (Viterbi 1995, Kim & Kong 2014b)

𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵) = 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + (1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  
              + �(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 )𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2� 
              × �1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣�𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝  
𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) = (1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠  

              +(𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2)(1 − 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑣𝑣𝑣𝑣)𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 , 

(30a)

(30b)

(30c)

respectively, where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is the penalty computations required for the verification process. 
Exploiting the analysis in Viterbi (1995), the overall transfer function related to the 
computational complexity in the proposed technique is

𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵) =
𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)�1 −𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)�

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠[1 − 𝐻𝐻𝐻𝐻0
𝑠𝑠𝑠𝑠(𝐵𝐵𝐵𝐵)] �1 − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠 (𝐵𝐵𝐵𝐵)𝐻𝐻𝐻𝐻0

𝑠𝑠𝑠𝑠(𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠−1)(𝐵𝐵𝐵𝐵)�
, (31)

and the mean fine acquisition computation (MFAC) can be derived as

 (31)

and the mean fine acquisition computation (MFAC) can be 

derived as
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𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2
�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 +

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1
2

�𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1�� (32)

  +
𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝐵𝐵𝐵𝐵

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1�1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�
2 �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀

1 + �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝�𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2  

  +�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2�(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 ) 
  + (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1)�1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�(𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1)�,

where fine acquisition means that resolution for the acquisition is subcarrier sub-chip. Note that, 
for a high SNR, the expression Eq. (32) simplifies to

𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵 ≃
𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 + 1

2
𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 (33)

6.THEORETICAL ANALYSIS OF THE SCR-BASED SELECTION

The mean acquisition computation of the proposed-1 and proposed-2 techniques in Section 
4 vary with respect to 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 of the BOC signal. A proper choice of the decision threshold 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚
is to achieve the minimum MAC for high SNR, when the goal of the acquisition is to acquire as 
many strong line of sight (LOS) satellites as quickly as possible to determine a position fix. To 
determine 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 , we use Eqs. (22), (23), (25a), (25b), and (33) to find some simulation results 
shown in Fig. 4, where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 of the proposed-2 technique is determined such that the 
maximum SNR loss is less than 2dB. For example, [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓]=[2,1] for BOC(1, 1), [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [2, 2]
for BOC(2, 1), BOC(3,1), and BOC(4, 1), and [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [4,2] for BOC(5, 1), BOC(6, 1) and
BOC(7, 1). As shown, the proposed-2 technique has smaller MAC for SCR less than 3, whereas 
the proposed-1 technique has smaller MAC for SCR larger than 2. Therefore, it can be found that 
𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 = 2.5 without loss of generality. In practice, proposed-1 technique shall be useful for the low 
computational acquisition of GPS L1-M, Galileo E6-A, GPS L2-M, Galileo E1 BOC(1,1), 
COMPASS B1 BOC(1,1), and proposed-2 technique shall be useful for the low computational 
acquisition of COMPASS B1, Galileo E1-A, COMPASS B3-𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and COMPASS B3-A𝑃𝑃𝑃𝑃.

7. NUMERICAL RESULTS

In this section, the proposed acquisition technique tested for a receiver, with4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Hz BPF 
bandwidth, sampling frequency 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and correlation interval 𝑇𝑇𝑇𝑇 = 1msec. The code phase 
and Doppler frequency search step sizes are (𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)/(4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and Δ𝑓𝑓𝑓𝑓 = 500 Hz, respectively, and 
the chip rate of the PRN code is 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 = 1.023 MHz, the chip rate of the tiered code is 1 kHz, and 
Doppler frequency search is from −5kHz to 5 kHz. In the following simulations, we target the 
constant false alarm rate, 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 = 10−2(Spangenberget al. 2000, Li et al. 2008), and the decision 
threshold 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 for the 𝑖𝑖𝑖𝑖-th stage is set from 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 in Eqs. (27c) and (29c) asYe et al.(2008).

Fig. 5 shows a result of 104 Monte Carlo simulations for the detection probabilities of 
sinBOC(2,1) for the proposed acquisition techniques. As shown in Eq. (27a), the detection 
probability decreases as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 increases. The detection probability for the proposed-1 technique is 
about 1dB less than that for the conventional FFT-based BOC acquisition technique, and the 
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𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2
�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 +

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1
2

�𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1�� (32)

  +
𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝐵𝐵𝐵𝐵

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1�1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�
2 �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀

1 + �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝�𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2  

  +�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2�(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 ) 
  + (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1)�1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�(𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1)�,

where fine acquisition means that resolution for the acquisition is subcarrier sub-chip. Note that, 
for a high SNR, the expression Eq. (32) simplifies to

𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵 ≃
𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 + 1

2
𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 (33)

6.THEORETICAL ANALYSIS OF THE SCR-BASED SELECTION

The mean acquisition computation of the proposed-1 and proposed-2 techniques in Section 
4 vary with respect to 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 of the BOC signal. A proper choice of the decision threshold 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚
is to achieve the minimum MAC for high SNR, when the goal of the acquisition is to acquire as 
many strong line of sight (LOS) satellites as quickly as possible to determine a position fix. To 
determine 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 , we use Eqs. (22), (23), (25a), (25b), and (33) to find some simulation results 
shown in Fig. 4, where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 of the proposed-2 technique is determined such that the 
maximum SNR loss is less than 2dB. For example, [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓]=[2,1] for BOC(1, 1), [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [2, 2]
for BOC(2, 1), BOC(3,1), and BOC(4, 1), and [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [4,2] for BOC(5, 1), BOC(6, 1) and
BOC(7, 1). As shown, the proposed-2 technique has smaller MAC for SCR less than 3, whereas 
the proposed-1 technique has smaller MAC for SCR larger than 2. Therefore, it can be found that 
𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 = 2.5 without loss of generality. In practice, proposed-1 technique shall be useful for the low 
computational acquisition of GPS L1-M, Galileo E6-A, GPS L2-M, Galileo E1 BOC(1,1), 
COMPASS B1 BOC(1,1), and proposed-2 technique shall be useful for the low computational 
acquisition of COMPASS B1, Galileo E1-A, COMPASS B3-𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and COMPASS B3-A𝑃𝑃𝑃𝑃.

7. NUMERICAL RESULTS

In this section, the proposed acquisition technique tested for a receiver, with4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Hz BPF 
bandwidth, sampling frequency 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and correlation interval 𝑇𝑇𝑇𝑇 = 1msec. The code phase 
and Doppler frequency search step sizes are (𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)/(4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and Δ𝑓𝑓𝑓𝑓 = 500 Hz, respectively, and 
the chip rate of the PRN code is 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 = 1.023 MHz, the chip rate of the tiered code is 1 kHz, and 
Doppler frequency search is from −5kHz to 5 kHz. In the following simulations, we target the 
constant false alarm rate, 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 = 10−2(Spangenberget al. 2000, Li et al. 2008), and the decision 
threshold 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 for the 𝑖𝑖𝑖𝑖-th stage is set from 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 in Eqs. (27c) and (29c) asYe et al.(2008).

Fig. 5 shows a result of 104 Monte Carlo simulations for the detection probabilities of 
sinBOC(2,1) for the proposed acquisition techniques. As shown in Eq. (27a), the detection 
probability decreases as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 increases. The detection probability for the proposed-1 technique is 
about 1dB less than that for the conventional FFT-based BOC acquisition technique, and the 

 

- 11 -

𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵 =
𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝐵𝐵𝐵𝐵

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2
�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 +

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1
2

�𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1�� (32)

  +
𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝐵𝐵𝐵𝐵

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1�1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�
2 �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀

1 + �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝�𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2  

  +�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2�(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 ) 
  + (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1)�1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�(𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1)�,

where fine acquisition means that resolution for the acquisition is subcarrier sub-chip. Note that, 
for a high SNR, the expression Eq. (32) simplifies to

𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵 ≃
𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 + 1

2
𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 (33)

6.THEORETICAL ANALYSIS OF THE SCR-BASED SELECTION

The mean acquisition computation of the proposed-1 and proposed-2 techniques in Section 
4 vary with respect to 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 of the BOC signal. A proper choice of the decision threshold 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚
is to achieve the minimum MAC for high SNR, when the goal of the acquisition is to acquire as 
many strong line of sight (LOS) satellites as quickly as possible to determine a position fix. To 
determine 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 , we use Eqs. (22), (23), (25a), (25b), and (33) to find some simulation results 
shown in Fig. 4, where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 of the proposed-2 technique is determined such that the 
maximum SNR loss is less than 2dB. For example, [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓]=[2,1] for BOC(1, 1), [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [2, 2]
for BOC(2, 1), BOC(3,1), and BOC(4, 1), and [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [4,2] for BOC(5, 1), BOC(6, 1) and
BOC(7, 1). As shown, the proposed-2 technique has smaller MAC for SCR less than 3, whereas 
the proposed-1 technique has smaller MAC for SCR larger than 2. Therefore, it can be found that 
𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 = 2.5 without loss of generality. In practice, proposed-1 technique shall be useful for the low 
computational acquisition of GPS L1-M, Galileo E6-A, GPS L2-M, Galileo E1 BOC(1,1), 
COMPASS B1 BOC(1,1), and proposed-2 technique shall be useful for the low computational 
acquisition of COMPASS B1, Galileo E1-A, COMPASS B3-𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and COMPASS B3-A𝑃𝑃𝑃𝑃.

7. NUMERICAL RESULTS

In this section, the proposed acquisition technique tested for a receiver, with4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Hz BPF 
bandwidth, sampling frequency 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and correlation interval 𝑇𝑇𝑇𝑇 = 1msec. The code phase 
and Doppler frequency search step sizes are (𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)/(4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and Δ𝑓𝑓𝑓𝑓 = 500 Hz, respectively, and 
the chip rate of the PRN code is 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 = 1.023 MHz, the chip rate of the tiered code is 1 kHz, and 
Doppler frequency search is from −5kHz to 5 kHz. In the following simulations, we target the 
constant false alarm rate, 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 = 10−2(Spangenberget al. 2000, Li et al. 2008), and the decision 
threshold 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 for the 𝑖𝑖𝑖𝑖-th stage is set from 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 in Eqs. (27c) and (29c) asYe et al.(2008).

Fig. 5 shows a result of 104 Monte Carlo simulations for the detection probabilities of 
sinBOC(2,1) for the proposed acquisition techniques. As shown in Eq. (27a), the detection 
probability decreases as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 increases. The detection probability for the proposed-1 technique is 
about 1dB less than that for the conventional FFT-based BOC acquisition technique, and the 
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𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵 =
𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝐵𝐵𝐵𝐵

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2
�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 +

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1
2

�𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1�� (32)

  +
𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝐵𝐵𝐵𝐵

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1�1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�
2 �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀

1 + �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝�𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2  

  +�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2�(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 ) 
  + (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1)�1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�(𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1)�,

where fine acquisition means that resolution for the acquisition is subcarrier sub-chip. Note that, 
for a high SNR, the expression Eq. (32) simplifies to

𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵 ≃
𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 + 1

2
𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 (33)

6.THEORETICAL ANALYSIS OF THE SCR-BASED SELECTION

The mean acquisition computation of the proposed-1 and proposed-2 techniques in Section 
4 vary with respect to 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 of the BOC signal. A proper choice of the decision threshold 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚
is to achieve the minimum MAC for high SNR, when the goal of the acquisition is to acquire as 
many strong line of sight (LOS) satellites as quickly as possible to determine a position fix. To 
determine 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 , we use Eqs. (22), (23), (25a), (25b), and (33) to find some simulation results 
shown in Fig. 4, where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 of the proposed-2 technique is determined such that the 
maximum SNR loss is less than 2dB. For example, [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓]=[2,1] for BOC(1, 1), [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [2, 2]
for BOC(2, 1), BOC(3,1), and BOC(4, 1), and [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [4,2] for BOC(5, 1), BOC(6, 1) and
BOC(7, 1). As shown, the proposed-2 technique has smaller MAC for SCR less than 3, whereas 
the proposed-1 technique has smaller MAC for SCR larger than 2. Therefore, it can be found that 
𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 = 2.5 without loss of generality. In practice, proposed-1 technique shall be useful for the low 
computational acquisition of GPS L1-M, Galileo E6-A, GPS L2-M, Galileo E1 BOC(1,1), 
COMPASS B1 BOC(1,1), and proposed-2 technique shall be useful for the low computational 
acquisition of COMPASS B1, Galileo E1-A, COMPASS B3-𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and COMPASS B3-A𝑃𝑃𝑃𝑃.

7. NUMERICAL RESULTS

In this section, the proposed acquisition technique tested for a receiver, with4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Hz BPF 
bandwidth, sampling frequency 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and correlation interval 𝑇𝑇𝑇𝑇 = 1msec. The code phase 
and Doppler frequency search step sizes are (𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)/(4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and Δ𝑓𝑓𝑓𝑓 = 500 Hz, respectively, and 
the chip rate of the PRN code is 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 = 1.023 MHz, the chip rate of the tiered code is 1 kHz, and 
Doppler frequency search is from −5kHz to 5 kHz. In the following simulations, we target the 
constant false alarm rate, 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 = 10−2(Spangenberget al. 2000, Li et al. 2008), and the decision 
threshold 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 for the 𝑖𝑖𝑖𝑖-th stage is set from 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 in Eqs. (27c) and (29c) asYe et al.(2008).

Fig. 5 shows a result of 104 Monte Carlo simulations for the detection probabilities of 
sinBOC(2,1) for the proposed acquisition techniques. As shown in Eq. (27a), the detection 
probability decreases as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 increases. The detection probability for the proposed-1 technique is 
about 1dB less than that for the conventional FFT-based BOC acquisition technique, and the 
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𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2
�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 +

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1
2

�𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1�� (32)

  +
𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝐵𝐵𝐵𝐵

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1�1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�
2 �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀

1 + �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝�𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2  

  +�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2�(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 ) 
  + (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1)�1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�(𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1)�,

where fine acquisition means that resolution for the acquisition is subcarrier sub-chip. Note that, 
for a high SNR, the expression Eq. (32) simplifies to

𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵 ≃
𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 + 1

2
𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 (33)

6.THEORETICAL ANALYSIS OF THE SCR-BASED SELECTION

The mean acquisition computation of the proposed-1 and proposed-2 techniques in Section 
4 vary with respect to 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 of the BOC signal. A proper choice of the decision threshold 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚
is to achieve the minimum MAC for high SNR, when the goal of the acquisition is to acquire as 
many strong line of sight (LOS) satellites as quickly as possible to determine a position fix. To 
determine 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 , we use Eqs. (22), (23), (25a), (25b), and (33) to find some simulation results 
shown in Fig. 4, where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 of the proposed-2 technique is determined such that the 
maximum SNR loss is less than 2dB. For example, [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓]=[2,1] for BOC(1, 1), [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [2, 2]
for BOC(2, 1), BOC(3,1), and BOC(4, 1), and [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [4,2] for BOC(5, 1), BOC(6, 1) and
BOC(7, 1). As shown, the proposed-2 technique has smaller MAC for SCR less than 3, whereas 
the proposed-1 technique has smaller MAC for SCR larger than 2. Therefore, it can be found that 
𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 = 2.5 without loss of generality. In practice, proposed-1 technique shall be useful for the low 
computational acquisition of GPS L1-M, Galileo E6-A, GPS L2-M, Galileo E1 BOC(1,1), 
COMPASS B1 BOC(1,1), and proposed-2 technique shall be useful for the low computational 
acquisition of COMPASS B1, Galileo E1-A, COMPASS B3-𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and COMPASS B3-A𝑃𝑃𝑃𝑃.

7. NUMERICAL RESULTS

In this section, the proposed acquisition technique tested for a receiver, with4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Hz BPF 
bandwidth, sampling frequency 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and correlation interval 𝑇𝑇𝑇𝑇 = 1msec. The code phase 
and Doppler frequency search step sizes are (𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)/(4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and Δ𝑓𝑓𝑓𝑓 = 500 Hz, respectively, and 
the chip rate of the PRN code is 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 = 1.023 MHz, the chip rate of the tiered code is 1 kHz, and 
Doppler frequency search is from −5kHz to 5 kHz. In the following simulations, we target the 
constant false alarm rate, 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 = 10−2(Spangenberget al. 2000, Li et al. 2008), and the decision 
threshold 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 for the 𝑖𝑖𝑖𝑖-th stage is set from 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 in Eqs. (27c) and (29c) asYe et al.(2008).

Fig. 5 shows a result of 104 Monte Carlo simulations for the detection probabilities of 
sinBOC(2,1) for the proposed acquisition techniques. As shown in Eq. (27a), the detection 
probability decreases as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 increases. The detection probability for the proposed-1 technique is 
about 1dB less than that for the conventional FFT-based BOC acquisition technique, and the 

 (32)

where fine acquisition means that resolution for the 

acquisition is subcarrier sub-chip. Note that, for a high SNR, 

the expression Eq. (32) simplifies to
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𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2
�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 +

𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1
2

�𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1�� (32)

  +
𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴2𝐵𝐵𝐵𝐵

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1�1 − 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�
2 �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀

1 + �𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝�𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2  

  +�𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2�(1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 − 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀1 ) 
  + (𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 − 1)�1 − 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1 + 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴1𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓2�(𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2 + 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1)�,

where fine acquisition means that resolution for the acquisition is subcarrier sub-chip. Note that, 
for a high SNR, the expression Eq. (32) simplifies to

𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵 ≃
𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 + 1

2
𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 (33)

6.THEORETICAL ANALYSIS OF THE SCR-BASED SELECTION

The mean acquisition computation of the proposed-1 and proposed-2 techniques in Section 
4 vary with respect to 𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 of the BOC signal. A proper choice of the decision threshold 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚
is to achieve the minimum MAC for high SNR, when the goal of the acquisition is to acquire as 
many strong line of sight (LOS) satellites as quickly as possible to determine a position fix. To 
determine 𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 , we use Eqs. (22), (23), (25a), (25b), and (33) to find some simulation results 
shown in Fig. 4, where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 of the proposed-2 technique is determined such that the 
maximum SNR loss is less than 2dB. For example, [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓]=[2,1] for BOC(1, 1), [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [2, 2]
for BOC(2, 1), BOC(3,1), and BOC(4, 1), and [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓] = [4,2] for BOC(5, 1), BOC(6, 1) and
BOC(7, 1). As shown, the proposed-2 technique has smaller MAC for SCR less than 3, whereas 
the proposed-1 technique has smaller MAC for SCR larger than 2. Therefore, it can be found that 
𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚 = 2.5 without loss of generality. In practice, proposed-1 technique shall be useful for the low 
computational acquisition of GPS L1-M, Galileo E6-A, GPS L2-M, Galileo E1 BOC(1,1), 
COMPASS B1 BOC(1,1), and proposed-2 technique shall be useful for the low computational 
acquisition of COMPASS B1, Galileo E1-A, COMPASS B3-𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and COMPASS B3-A𝑃𝑃𝑃𝑃.

7. NUMERICAL RESULTS

In this section, the proposed acquisition technique tested for a receiver, with4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Hz BPF 
bandwidth, sampling frequency 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 = 4𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and correlation interval 𝑇𝑇𝑇𝑇 = 1msec. The code phase 
and Doppler frequency search step sizes are (𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠)/(4𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and Δ𝑓𝑓𝑓𝑓 = 500 Hz, respectively, and 
the chip rate of the PRN code is 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠 = 1.023 MHz, the chip rate of the tiered code is 1 kHz, and 
Doppler frequency search is from −5kHz to 5 kHz. In the following simulations, we target the 
constant false alarm rate, 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 = 10−2(Spangenberget al. 2000, Li et al. 2008), and the decision 
threshold 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 for the 𝑖𝑖𝑖𝑖-th stage is set from 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 in Eqs. (27c) and (29c) asYe et al.(2008).

Fig. 5 shows a result of 104 Monte Carlo simulations for the detection probabilities of 
sinBOC(2,1) for the proposed acquisition techniques. As shown in Eq. (27a), the detection 
probability decreases as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓 increases. The detection probability for the proposed-1 technique is 
about 1dB less than that for the conventional FFT-based BOC acquisition technique, and the 

 (33)

6. tHEorEtIcAL AnALYSIS oF tHE Scr-
BASEd SELEctIon

The mean acquisition computation of the proposed-1 

and proposed-2 techniques in Section 4 vary with respect 

to msc /mc of the BOC signal. A proper choice of the decision 

threshold γ
m

 is to achieve the minimum MAC for high SNR, 

when the goal of the acquisition is to acquire as many strong 

LOS satellites as quickly as possible to determine a position 
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fix. To determine γ
m

, we use Eqs. (22), (23), (25a), (25b), and 

(33) to find some simulation results shown in Fig. 4, where 

c
c
 and c

f
 of the proposed-2 technique is determined such 

that the maximum SNR loss is less than 2 dB. For example, 

[c
c
, c

f
] = [2, 1] for BOC(1, 1), [c

c
, c

f
]=[2, 2] for BOC(2, 1), 

BOC(3, 1), and BOC(4, 1), and [c
c
, c

f
]= [4, 2] for BOC(5, 

1), BOC(6, 1) and BOC(7, 1). As shown, the proposed-2 

technique has smaller MAC for SCR less than 3, whereas 

the proposed-1 technique has smaller MAC for SCR larger 

than 2. Therefore, it can be found that γ
m

=2.5 without loss 

of generality. In practice, proposed-1 technique shall be 

useful for the low computational acquisition of GPS L1-M, 

Galileo E6-A, GPS L2-M, Galileo E1 BOC(1, 1), COMPASS B1 

BOC(1, 1), and proposed-2 technique shall be useful for the 

low computational acquisition of COMPASS B1, Galileo E1-

A, COMPASS B3-A
D

, and COMPASS B3-A
P
.

7. nuMErIcAL rESuLtS

In this section, the proposed acquisition technique 

tested for a receiver, with 4f
sc

 Hz BPF bandwidth, sampling 

frequency f
s
=4f

sc
 and correlation interval T=1 msec. The code 

phase and Doppler frequency search step sizes are (T
c
m

c
)/

(4m
sc

) and Δf=500 Hz, respectively, and the chip rate of the 

PRN code is Rc=1.023 MHz, the chip rate of the tiered code 

is 1 kHz, and Doppler frequency search is from -5 kHz to 

5 kHz. In the following simulations, we target the constant 

false alarm rate, P
F
=10-2 (Spangenberg et al. 2000, Li et al. 

2008), and the decision threshold γ
i
 for the i-th stage is set 

from Pi
F  in Eqs. (27c) and (29c) as Ye et al. (2008).

Fig. 5 shows a result of 104 Monte Carlo simulations for 

the detection probabilities of sinBOC(2, 1) for the proposed 

acquisition techniques. As shown in Eq. (27a), the detection 

probability decreases as c
c
c

f
 increases. The detection 

probability for the proposed-1 technique is about 1 dB less 

than that for the conventional FFT-based BOC acquisition 

technique, and the detection probability for the proposed-2 

technique with [c
c
, c

f
] = [2, 2] is 3 dB less than that for the 

conventional FFT-based BOC acquisition technique.

Fig. 6 shows the MFAC of the proposed acquisition 

techniques for sinBOC(2, 1) evaluated from 104 Monte 

Carlo simulations, where the MFAC is the average number of 

total complex multiplications performed until a fine signal 

acquisition is declared at the verification process which 

performs p (=10) times computations. The proposed acquisition 

technique compared with the conventional FFT-based BOC 

acquisition technique (Borre et al. 2007). As expected, the 

MFAC for the fine acquisition decreases as C/N
0
 increases, 

and the code phase hypothesis compression c
c
 has a great 

impact on the computational complexity. For high C/N
0
, the 

proposed-2 technique with [c
c
, c

f
] = [2, 2] requires less than 

70% and 30% of the MFAC required for the conventional 

FFT-based BOC acquisition technique and proposed-1 

technique, respectively. As C/N
0
 decreases, the MFAC of 

all the acquisition technique starts to increase. Especially, 

the MFAC of the proposed-2 technique becomes higher 

than that of the conventional FFT-based BOC acquisition 

technique (Borre et al. 2007) at C/N
0
=40 dB-Hz. For 

moderate C/N
0
 (e.g., <42 dB), the proposed-2 technique 

with [c
c
, c

f
] = [4, 2] requires about 30% of MFAC used by the 

conventional FFT-based BOC acquisition technique (Borre 

et al. 2007).

Fig. 7 shows a result of 104 Monte Carlo simulations for 

Fig 4. Computational complexity for high SNR. Fig 5. Detection probability of BOC(2, 1).

Fig 6. Mean fine acquisition computation of BOC(2, 1).
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the detection probabilities of sinBOC(7, 1) for various c
c
 

and c
f
 in the first stage of the proposed-2 technique. As 

shown in Eq. (27a), the detection probability decreases as 

c
c
c

f
 increases. The detection probability for the proposed-1 

technique is about 1 dB less than that for the conventional 

FFT-based BOC acquisition technique, which is similar 

to the case of sinBOC(2, 1). However, the difference of 

detection probability between the proposed-2 technique 

with [c
c
, c

f
] = [2, 2] and the conventional FFT-based BOC 

acquisition technique is much smaller than that for 

sinBOC(2, 1). This is because non-negligible energy at the 

neighboring code phases of the true code phase increases 

as SCR increases.

Fig. 8 shows the MFAC of the proposed acquisition 

techniques for sinBOC(7, 1) evaluated from 104 Monte Carlo 

simulations, where the simulation environment is same as 

that for Fig. 6. As expected, the MFAC for the signal acquisition 

decreases as C/N
0
 increases, and the code phase hypothesis 

compression c
c
 has a great influence on the computational 

complexity for the proposed-2 technique. The performance 

of the proposed-1 technique for sinBOC(7, 1) is much better 

than that for sinBOC(2, 1). For high C/N
0
, the proposed-1 

technique requires less than 75% and 40% of the proposed-2 

technique with [c
c
, c

f
] = [4, 2] and [c

c
, c

f
] = [2, 3], respectively. As 

C/N
0
 decreases, the MFAC of all the acquisition techniques 

starts to increase. For moderate C/N
0
 (<42 dB), the 

proposed-1 technique and the proposed-2 technique with 

[c
c
, c

f
] = [4, 2] requires about 20% and 30% of MFAC used by 

the conventional FFT-based BOC acquisition technique, 

respectively (Borre et al. 2007). The MFAC of the proposed-1 

technique outperforms that of the proposed-2 technique for 

sinBOC(7, 1) due to high SCR.

Note that, as shown in Figs. 5 and 7, the degradation of the 

detection probability for LOS satellites (i.e., C/N
0
 > 44 dBHz) 

in comparison to the conventional technique is negligible 

for the proposed-1 technique but non-negligible for the 

proposed-2 technique. However, as shown in Figs. 6 and 8, 

the computational cost in comparison to the conventional 

technique is significant for the proposed-1 technique; the 

reduction of computational cost is about 2 times in Fig. 

6 and about 10 times in Fig. 8. This result demonstrates 

that the proposed technique (especially, the proposed-1 

technique) enables a fast and efficient acquisition of 

LOS satellites, which can reduce the requirement for 

computational capacity of the GNSS receivers.

8. concLuSIon

A low computational FFT-based fine BOC signal 

acquisition technique depending on SCR has been presented 

in this paper. The first stage of the proposed technique 

selectively utilizes the frequency-domain realization of 

BPSK-like and modified BOC-TDCC techniques depending 

on the SCR in order to achieve a low computational and 

fast coarse acquisition of the incoming BOC signal, and 

the second stage completes the fine BOC acquisition. 

The proper choice of acquisition technique for the first 

stage has been determined from the theoretical analysis 

of the MAC. The performance of the proposed technique 

has been theoretically analyzed and demonstrated with 

numerous Monte Carlo simulations. It has been shown that 

the proposed techniques achieve multiple times smaller 

computational cost in the acquisition of BOC signals than 

conventional FFT-based BOC acquisition technique. As a 

result, the proposed technique is beneficial for the receivers 

to make a quick position fix when there are plenty of strong 

(i.e., line-of-sight) GNSS satellites to be searched.
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