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1. Introduction

A personal navigation system (PNS), which provides 

a user’s position to a special agent such as a firefighter 

or soldier, is recognized as an important technology for 

their safety and mission success. Among the methods of 

estimating the position, the Global Navigation Satellite 

System (GNSS) provides position information in various 

environments (Wang et al. 2012). But, this method is 

unsuitable for agents who perform missions indoors or 

outdoors because position estimation accuracy using GNSS 

is degraded by the blocking or distortion of satellite signals. 

An alternative method can be classified according to 

whether wireless equipment is used. A position estimation 

method estimates the user position using radio signals from 

Dual Foot-PDR System Considering Lateral Position Error 
Characteristics
Jae Hong Lee1, Seong Yun Cho2, Chan Gook Park1†

1Department of Aerospace Engineering/ASRI, Seoul National University, Seoul 08826, Republic of Korea
2Department of Robotics and Mobility, Kyungil University, Kyeongbuk 38428, Republic of Korea

ABSTRACT

In this paper, a dual foot (DF)-PDR system is proposed for the fusion of integration (IA)-based PDR systems independently 

applied on both shoes. The horizontal positions of the two shoes estimated from each PDR system are fused based on a 

particle filter. The proposed method bounds the position error even if the walking time increases without an additional sensor. 

The distribution of particles is a non-Gaussian distribution to express the lateral error due to systematic drift. Assuming that 

the shoe position is the pedestrian position, the multi-modal position distribution can be fused into one using the Gaussian 

sum. The fused pedestrian position is used as a measurement of each particle filter so that the position error is corrected. As 

a result, experimental results show that position of pedestrians can be effectively estimated by using only the inertial sensors 

attached to both shoes.

Keywords:	� pedestrian dead reckoning, integration approach, dual foot-mounted inertial sensors, indoor pedestrian navigation

wireless infrastructure such as Wi-Fi and BLE (Cho 2016). 

Since this method can only be used where the wireless 

infrastructure is already installed, the availability problem 

depending on the location, such as GNSS, is a disadvantage.

On the other hand, pedestrian dead reckoning (PDR), 

which uses IMU built into the user device or attached to 

the body, has the advantage of being available regardless 

of the place where it is used. PDR is a method of estimating 

the pedestrian position by considering the walking 

characteristic included in the acceleration and angular 

velocity data measured by the IMU. This method is classified 

into a parametric approach (PA) that detects steps and adds 

estimated step length in the direction of movement (Kim 

et al. 2004, Shin & Park 2011), and an integration approach 

(IA) that integrates the inertial sensor output according to 

the inertial navigation system (INS) mechanization (Foxlin 

2005, Ju & Park 2018). The PA-based PDR system enables 

stable step detection through various techniques, but to 

determine the correct walking direction, the gait type must 

be accurately recognized. On the other hand, the IA-based 

PDR system does not require gait type recognition, but 

the navigation accuracy calculated by the INS mechanism 
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in Section 3. In Section 4, we verify the performance of the 

proposed method through actual walking experiments and 

the results, and we conclude this paper in Section 5.

2. ERROR CHARACTERISTICS OF 
STANDALONE PDR SYSTEM

2.1 Systematic Drift in Standalone PDR System

The systematic drift of the IA-based PDR system means 

that the error of the estimated position in the PDR system of 

both shoes drifts symmetrically in the lateral direction. This 

error is called systematic drift or symmetric drift (Nilsson 

et al. 2012) and becomes a basic assumption for improving 

the accuracy of estimated pedestrian position through the 

fusion of both shoe positions in the DF-PDR system. Various 

research results using systematic drift have been proposed, 

but a definite cause analysis for this phenomenon has not 

been conducted properly. Most of the papers mention only 

the systematic drift results in the position domain (Nilsson 

et al. 2013, Shi et al. 2017). Before proposing the fusion 

method, we try to find the cause of the error.

Systematic drift can be observed when walking on a 

straight trajectory. The experimenter walked 20 times along 

a 70 m straight trajectory. IMUs were attached to each of 

the two shoes, and the position of the shoes was estimated 

using an IA-based PDR system consisting of EKF and zero-

velocity update (ZUPT). The coordinate system is the 

Local Level Coordinate System, and the initial movement 

direction is defined by the X-axis and the lateral direction 

by the Y-axis. Standing still for 10 seconds before walking, 

we estimated and eliminated the gyro bias of each IMU to 

minimize position errors due to gyro bias. Also, the shoe's 

initial direction and the walking direction were matched 

using the estimated position during the initial five steps.

Fig. 1a is the average of the estimated shoe position in the 

20 experiments. The blue and red trajectories are the results 

of the left and right shoes' estimated position, respectively. 

Pedestrians walked on a straight trajectory, so if there is no 

position error, the two trajectories should be straight parallel 

to the X-axis. However, it is observed that the estimated 

position error drifts in the negative direction of the Y-axis 

for the left shoe and the positive direction for the right shoe. 

Fig. 1b shows the estimated position at the last step in each 

test. As in (a), it can be seen that the positions of the left 

and right shoes are divided and distributed based on the 

X-axis. This is a systematic drift phenomenon, and the drift 

refers to the tendency of position errors to occur in opposite 

directions based on the moving direction.

rapidly decreases over time. To solve this problem, an IA-

based PDR system is usually used an IMU attached to a 

shoe, and it must detect the zero-velocity at which the shoe 

touches the ground and perform ZUPT to correct the error. 

This system is designed based on an extended Kalman filter 

(EKF) in consideration of the nonlinearity of INS. It provides 

high position estimation accuracy and we demonstrated 

this through the IPIN 2016 competition. But it cannot 

estimate position error and heading errors in filters that use 

only zero-velocity measurements. To compensate for this, 

various studies are conducted to correct the position error 

using prior building information such as map information 

or corridor direction (Borenstein & Ojeda 2010).

However, these methods also have constraints that 

preliminary preparations such as map information are 

required for firefighters to be put into various environments. 

There are also studies in which inertial sensors are attached 

to both shoes and fused to correct the position error with 

only inertial sensors without additional information or 

equipment. One of the methods is limiting the stride range 

of each shoe's estimated position (Shi et al. 2017, Zhao et al. 

2019). When this method is applied, the position accuracy 

is improved instead of using a standalone PDR system. 

However, since this method only corrects position errors 

larger than the range limit, there is a disadvantage that the 

error within the range cannot be corrected. Another method 

is to use an ultrasonic sensor to correct the position of both 

shoes (Weenk et al. 2015). However, this has the difference 

that it requires an additional sensor, unlike the previous 

research using only the IMU.

In this paper, we propose a dual foot (DF)-PDR system 

that fuses the estimated lateral position of shoes from each 

PDR system using a particle filter (PF). The position error, 

estimated by the PDR system using the IMU mounted on 

each shoe, shows a systematic drift characteristic, which 

means the shoe's symmetrical position error in the lateral 

direction (Nilsson et al. 2013). The horizontal position is 

separated from the states of the EKF constituting the IA-

based PDR, and the horizontal position is defined as the 

states of the particle filter.  Using the particle filter is suitable 

to express the position error caused by systematic drift. 

The estimated shoe position in each particle filter is fused 

using the Gaussian mixing method and expressed as the 

pedestrian position. The fused pedestrian position is used 

as a measurement of the particle filter to correct the position 

error.

This paper is organized as follows. After presenting the 

experimental and analysis results for systematic drift, which 

is the basis for applying the DF-PDR system, in Section 2, 

a detailed description of the proposed system is described 
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There are also existing studies that analyzed the causes 

of such systematic drift. Considering previous studies that 

analyzed the cause of systematic drift, it can be inferred that 

the IMU sampling frequency is one of the causes of drift (Lee 

et al. 2020). In this study, to verify the relationship between 

the sampling frequency of the IMU and the systematic dritf, 

the sampling frequency was set to 1,000 Hz and used as a 

reference value. Downsampling was performed to produce 

an IMU output with a frequency lower than 1,000 Hz. 

Using this, they compared and analyzed how the estimated 

position, speed, and posture differ from the reference 

values. According to the results of this paper, yaw and lateral 

velocity errors occur due to low sampling frequency, and 

this has a symmetrical characteristic.

2.2 Distribution of Position Error by Systematic Drift

IA-based PDR systems can be designed using various 

filters. In general, in IA-based PDR systems that estimate 

the position through the INS mechanism, EKF is used to 

consider the nonlinearity of the INS. EKF is a filter that 

gives good estimation performance in a PDR system, but it 

is only suitable if the error can be expressed as a Gaussian 

distribution. In the PDR system, the process noise of EKF is 

assumed to be the Gaussian distribution of acceleration and 

angular velocity. However, since the position error called 

systematic drift can be seen in the previous chapter, it must 

be considered in the filter to improve position estimation 

performance. We tried to check whether the distribution 

of position errors in the lateral direction is suitable for EKF 

through 100 experiments. Fig. 2 shows the histogram results 

of the lateral position error for the left and right shoes. The 

histogram of the right shoe's position can be observed that 

the shape of the distribution is asymmetric, and the mode 

of the distribution is skewed from the center to the left. 

Conversely, the histogram of the left shoe position is the 

same as the right one that is asymmetric, and the mode is 

skewed from the center to the right. Various distributions 

can express asymmetry distribution, but we try to express 

the position error by modifying the Rayleigh distribution 

in the proposed method. The subset of the domain 

containing the elements of the Rayleigh distribution must 

be zero or more. However, since the position error should 

not be defined only in the positive domain, the Rayleigh 

distribution expressed in the positive domain was offset so 

that the negative domain could also be expressed.

	
2 2/ (2 )

2( ; ) , 0xxf x e xσσ
σ

−= ≥ 	 (1)

Eq. (1) represents the Rayleigh distribution.  is a subset 

of the domain, and when used in the proposed method, it is 

offset in the negative direction. Also, the left position error 

distribution flips the distribution of the right shoe's position 

error so that the modes are skewed in opposite directions. 

Since the Gaussian distribution is a representative 

distribution with a symmetrical shape, it is not suitable to 

express the position error observed earlier. The modified 

Rayleigh distribution is drawn in Fig. 2, and it is the result of 

growing it to match the histogram.

Since the proposed position error distribution is not 

Gaussian distribution, it violates the conditions for applying 

Fig. 1.  Experimental results with each shoe. (a) average of estimated 
position with each shoe, (b) estimated positions at last step.

(a)

(b)

Fig. 2.  Distribution of the lateral position error in one step.
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EKF. Therefore, the proposed method uses a particle filter 

to estimate the position using the proposed position error 

distribution. Particle filters are not well used in PDR systems 

because of their large computational volume, so only 

horizontal positions were estimated using a particle filter, 

and velocity and attitude errors were estimated using EKF.

3. Particle filter DF-PDR System

The system's structure proposed in this paper uses two 

filters to estimate each state estimated in a general PDR 

system separately. In this case, the particle filter uses the 

result estimated from EKF, which is similar to a marginalized 

particle filter (Schon et al. 2005). Algorithm 1 is an overview 

of the proposed method. Time update and measurement 

update of EKF are performed independently in each PDR 

system, and measurement update of the particle filter is 

performed by receiving information from the opposite side 

PDR system. 

After obtaining the value of the measurement (u ) from 

the IMU, the attitude and velocity are calculated according 

to the INS mechanization (Section 3.1). Each PDR system 

uses EKF to update the covariance for the state variable, 

and in the zero-velocity phase, ZUPT is used to estimate 

and correct the state related to EKF (Section 3.1). Since the 

EKF does not estimate the horizontal position but through 

a particle filter, the particles representing the horizontal 

position are propagated together in the time propagation 

step of the EKF (Section 3.2). Filters that estimate each 

shoe state are independently executed until the positions 

of the shoes are fused. The position from the PDR system 

that estimates each shoe's position is fused by a Gaussian 

mixture method to indicate the position of the pedestrian. 

Regardless of the left and right, at the end of the zero-

velocity phase, the fused pedestrian position is used for 

the measurement update of the particle filter (Section 3.2). 

Fig. 3 is an overall diagram of the system, and the structure 

of the right PDR system is the same as that of the left PDR 

system.

3.1 IA-based PDR System in Each Shoe

Since the proposed method is similar to the marginalized 

particle filter structure, the state updated by PF and the state 

updated by EKF is divided and defined as follow

	
TT T

PF EKF =  x x x 	 (2)

PFx is the state in the particle filter and consists of the horizontal 

position Xp  and Yp . EKF estimates the remaining state 

variables. In EKF, error state variables are defined and 

estimated. The error state variables for EKF are as follows.

	 ( ) ( ) ( )
Tl T l T b T

EKF Zpδ δ δ δφ δ = ∇ x v 	 (3)

Zpδ  is the vertical axis position error, lvδ  is the velocity 

error in the local horizontal coordinate system { }l , lδφ  

is the attitude error about the horizontal axis, and bδ∇  

is the acceleration bias error in the body frame { }b . By 

measurement update through ZUPT, heading error and 

gyro bias are not well estimated as the unobservable state, 

so in the proposed method, these variables were excluded 

from the state variable. The gyro bias was estimated and 

compensated for by averaging the gyro signal while standing 

still before walking.

Time propagation of navigation information is done 

Fig. 3.  Overall diagram of proposed method.

Algorithm 1
Time update of Kalman filter and particle filter: 

{ , }i r l∈for
       , , 1ˆ̂ { }i i

EKF k EKF kx x INS mechanism−←
       1

i i i iT i
k k k k kP F P F Q−← +

       1,...,n N=for
                

,( )
, , , 1~ ( | , ){ }i n i i

PF k PF k PF k kx P x x u predict new particle−

       end
end

Extended Kalman filter measurement update at each PDR system:
shoei is zero velocityif

      ,ˆ ,i i
EKF k kupdate x P by zupt

end

Particle filter measurement update:
ˆ̂{ , }l r

k PF PFz Gaussian mixture x x←
1,...,n N=for

       
,( )

, 1ˆ( | , ){ }i n i
k k PF k kq p z x z importance weights−=

end
  { }i

kresample N particles with q



Jae Hong Lee et al.   Dual Foot-PDR System Considering Lateral Position Error  39

http://www.ipnt.or.kr

through the INS mechanism. Since the inertial sensor 

mainly used in the PDR system is low-cost, the INS 

mechanism can be simplified by ignoring Earth's rotation 

and Coriolis force due to error characteristics and relatively 

low sampling frequency.

	

1 ( ) ,
2

l l b l
b

l l

q q

C f

ω= ⊗

= −

=

Ù

v g
p v





	 (4)

q  is quaternion to representing rotation from frame { }b  to 

frame { }l . lg  is gravity vector. bf  and  are the acceleration 

and angular velocity measured by the inertial sensor,
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The IA-based PDR system is a PDR system that is generally performed by attaching an 

IMU to a shoe. This system calculates the navigation solution using the INS mechanism. 
Therefore, navigation errors increase over time due to error factors such as bias. To compensate 
for the error, zero-velocity is detected in the stance phase when the shoe touches the ground, and 
the error of the state is estimated and compensated by performing ZUPT. 

The proposed method first estimates the error state vector, EKFx ,using EKF. The discrete 
state-space model can be expressed as follows. 
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where k  is a timestamp, k  is state transition matrix, and H  is measurement matrix. w  and   
mean process noise and measurement noise. 

The state transition matrix can be expressed as follows through the error model of Eq. (4). 
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where I  is the identity matrix, and subscribe means the dimension of the matrix. 3 2[ ]nf   is a 
matrix without 3rd column in [ ]nf  . dt is a time difference between sequential two samples. 

The zero-velocity means when the shoe touches the ground and does not move, and the 
stationary state can be detected through the inertial sensor output value. The detection was 
configured by referring to Leeet al. (2012). The matrix of measurements of the zero-velocity 
correction is as follows. 
 

 3 3 3 2 3 30   H I 0 0 (7) 
 
3.2 Particle Filter for Horizontal Position Update 
 

The horizontal position is excluded from the error state of EKF described in Section 3.2. In 
the proposed method, the horizontal position is time propagation and measurement update using 
a particle filter. 

When the relationship of the state variable defined in Eq. (2) is expressed as a probability, it 
can be expressed as follows by Bayes’ theorem. 
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calculates the navigation solution using the INS mechanism. 

Therefore, navigation errors increase over time due to error 

factors such as bias. To compensate for the error, zero-

velocity is detected in the stance phase when the shoe 

touches the ground, and the error of the state is estimated 

and compensated by performing ZUPT.

The proposed method first estimates the error state 

vector, EKFδx , using EKF. The discrete state-space model can 

be expressed as follows.
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where k  is a timestamp, kΦ  is state transition matrix, and  H 

is measurement matrix. w and η  mean process noise and 

measurement noise.

The state transition matrix can be expressed as follows 

through the error model of Eq. (4).
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where I  is the identity matrix, and subscribe means the 

dimension of the matrix. 3 2[ ]nf ××  is a matrix without 3rd 

column in [ ]nf × . dt is a time difference between sequential 

two samples.

The zero-velocity means when the shoe touches the 

ground and does not move, and the stationary state can 

be detected through the inertial sensor output value. The 

detection was configured by referring to Lee et al. (2012). 

The matrix of measurements of the zero-velocity correction 

is as follows.

	 [ ]3 3 3 2 3 3× × ×H I 0 0 	 (7)

3.2 Particle Filter for Horizontal Position Update

The horizontal position is excluded from the error state of 

EKF described in Section 3.2. In the proposed method, the 

horizontal position is time propagation and measurement 

update using a particle filter.

When the relationship of the state variable defined in 

Eq. (2) is expressed as a probability, it can be expressed as 

follows by Bayes’ theorem.

	 ,( | ) ( | , ) ( | )k k PF k EKF k EKF kp p p=x z x x z x z 	 (8)

As shown in Eq. (8), the posterior can be divided into 

position and probability of other state variables, which 

means that each state variable can be updated with a 

different filter. The probability distribution for the location is

	 ( ) ( )
, , , 1 , 1~ ( | , , )n n

PF k PF k PF k EKF k kp − −x x x x z 	 (9)

where n is the index for N particles. In a particle filter, the 

state is updated through the time propagation of particles. 

Referring to Eq. (4), the particle for the position is updated 

from the velocity probability. At this time, the probability 

distribution of the velocity can be obtained from the error 

covariance of EKF.

If only the error covariance of the velocity is considered, it 

becomes propagation with the same probability distribution 

as the existing EKF. For error in horizontal position due to 

systematic drift, the probability distribution of drift must be 

additionally considered in the propagation of particle filter. 

Section 2 showed that the lateral position error showed 

an asymmetric distribution, not a Gaussian distribution. 

The proposed method propagates particles using Rayleigh 

distribution based on this.

For propagation of particles, the prior is determined 

based on Eq. (10).

	
,

, , 1 .
,

~ ( , ) N sys
PF k PF k pos k

E sys

x
N

x−

 
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 

x x P 	 (10)

The first term is that expresses the error of the position 
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from the velocity covariance of the EKF. It is defined by Eq. 

(11).

	
2

.pos k vel dt= ⋅P P 	 (11)

The second term of Eq. (10) is the probability distribution 

considering systematic drift. Position error occurs only in 

the lateral direction, which is defined in frame {b}. However, 

the domain of the particle is frame {l}, so frame conversion 

is required.

	
,

, , 1

0 0
~

0 '( ; )
N sys n

bb
E sys PF k sys

x
C

x f σ−

   
   
   x 	 (12)

'f  is the offset Rayleigh distribution and sysσ  is a parameter 

expressing the lateral position error.

The position estimated by each independent PDR system 

means the shoe's position, but the position estimated by 

the two shoes should be similar in terms of ultimately 

estimating the position of a pedestrian. In other words, the 

estimated shoe position in each shoe can be assumed as 

two measures of pedestrian position. The estimated position 

in each PDR system represents the position of a pedestrian 

in a multi-modal form. The distribution of fused position, fusedp , 

is obtained using the Gaussian sum method to represent a 

single position distribution for pedestrians. a Gaussian sum 

of the form represents the fused position.

	 ( ) ( | , )fused n i i i

n
p N pα µ= Σ∑ 	 (13)

	 ,( ) ,( ) 21 1, ( )i i n i i n i

n n
p p

N N
µ µ= Σ = −∑ ∑ 	 (14)

where α  is the weight for each particle, iµ  and iΣ  are the 

mean and covariance representing each shoe's measured 

position, and N is the number of particles. Fig. 4 shows the 

distribution of each system's particles and the distribution 

of the fused position at a time point when the proposed 

algorithm is applied. The number of particles in the system 

was set to 100. Since the distribution of particles estimated 

by each PDR system considers systematic drift, it can be 

confirmed that it is more widely distributed in the lateral 

direction. The result of fused particles of the two systems 

is green. It can be seen that it includes positions of both 

systems, and the center of the distribution is positioned 

in the center relative to the side without being skewed 

anywhere on the left and right.

The fused position obtained in this way becomes the 

position measurement of each system and is used to 

measure the particle filter. The likelihood for the update can 

be computed as follows:

	 ( | ) ~ ( | , )fused i i
k kL N p µ Σz x 	 (15)

Since the center of the position distribution fused by 

the Gaussian mixture is in the middle of both feet, the 

horizontal position that should diverge due to systematic 

drift does not diverge.

	 , , 1 1( | ) ( | ) ( | , )PF k k k k PF k k kp L p − −∝x z z x x x z 	 (16)

Eq. (16) is the relationship between the posterior 

probability of the 2D position and the likelihood and prior 

probability according to the Bayes' rule. The importance 

weights for each particle were calculated by likelihood, 

considering the fused probability of positions, and 

resampling was performed. Resampling must be performed 

to manage high-quality particles, and in the proposed 

method, a systematic resampling technique that divides 

particles with large weights was used (Kitagawa 1996).

Table 1.  Specification of MTw.

Gyro Accelerometer
Dynamic range
Bias stability
Noise

1200deg/ s±
20deg/ hr

0.05deg/ /s Hz

2160 /m s±
-

20.003 / /m s HzFig. 4.  Fused position represents the pedestrian’s center.

Fig. 5.  Location of the inertial sensors.
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4. Experiment results

To verify the performance of the proposed DF-PDR 

system, a walking experiment was performed. As shown in 

Fig. 5, Xsens' IMU, MTw, was attached to the outside of each 

shoe. The sensor can be attached in various ways, but it is 

set to the rear side in this paper. The sensor performance is 

summarized in Table 1. Acceleration and angular velocity 

from IMU were acquired at 100 Hz.

There are two types of walking trajectories, straight and 

square. The performance of the proposed method was 

analyzed through the results of estimating the position of 

pedestrians using the independent IA-based PDR system 

without location fusion and the proposed DF-PDR system. 

The linear trajectory was performed 20 times, and the 

square trajectory was performed three times each for left 

and right rotation, and a total of six data were obtained 

for each trajectory, and the gyro bias was corrected using 

the data obtained by standing still about 5 seconds before 

walking. To compare the performance difference between 

the previous method and the proposed method, the range 

constraint method was implemented by referring to Prateek 

et al. (2013). This method defines the maximum step length 

and corrects the position inside the range constraint if there 

is a position error beyond that.

In a straight trajectory, the position error's mean was 

calculated for the final position. Fig. 6 shows the estimated 

position when each PDR is used independently and when 

two PDRs are fused, and the position error of the two PDRs 

is corrected based on this. This is a result showing only one 

of several experiments. If standalone PDR is used as in (a), 

it can be seen that the position estimation error gradually 

increases toward the side in the forward direction. On the 

other hand, in the case of using the proposed method, it can 

be seen that the lateral position estimation error is reduced. 

In Table 2, the proposed method's average position error 

was 0.48 m and 0.55 m, respectively, while the average 

position error of the standalone PDR was 0.52 m for the left 

Table 2.  Error of estimated position (Straight).

Left Right
Mean Std. Mean Std.

Standalone
Range constraint
Proposed

0.52
0.40
0.48

0.32
0.23
0.13

0.97
0.82
0.55

0.33
0.21
0.18

Fig. 6.  Estimated position using each algorithm (straight trajectory). (a) 
standalone PDR. (b) proposed DF-PDR system.

(a)

(b)

Fig. 8.  Estimated position using each algorithm (square trajectory). (a) 
standalone PDR. (b) proposed DF-PDR system.

(a)

(b)

Fig. 7.  Estimated positions at last step shoe. (a) standalone PDR. (b) 
proposed DF-PDR system.

(a) (b)
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foot and 0.97 m for the right foot. Although it does not seem 

to be significantly improved numerically, it can be seen that 

the estimation performance improved from 0.32 to 0.13 by 

comparing the standard deviation. It can also be seen in Fig. 

7, which shows the position estimate for the last step. If the 

proposed method is used, the position distributed around 

different centers on the X-axis are distributed based on 0, 

and it can be seen that the variance is reduced. In Table 2, 

the previous method using range constraints outperforms 

the standalone method, but the positional error is larger 

than the proposed method. Although estimating the left 

shoe position is better than the proposed method, the 

difference is not significant, and the standard deviation is 

smaller in the proposed method.

In the standalone PDR, the position error of pedestrians 

walking 70 m was an average of 0.5 m. This is similar to a 

person's stride. If a correction technique considering only 

the boundary for stride is used in the DF-PDR system, the 

error cannot be corrected at a moving distance of 70 m or 

less. On the other hand, since the proposed algorithm fuses 

the position without conditions, it reduces the lateral error 

and improves the position accuracy.

In the second experiment, the experimenter returned 

to the initial position after three turns along the square 

trajectory. The circumference of the square is about 93 m, 

and the experimenter walked for 3 minutes. Fig. 8 and Table 

3 show the performance results of both techniques. In Fig. 8, 

it can be seen that the position estimated by the standalone 

PDR deviates from the reference trajectory as if rotating. This 

is a result affected by systematic drift. On the other hand, in 

the case of using the proposed method, it can be confirmed 

that the estimated position is estimated to fit the reference 

trajectory because the lateral direction error is corrected 

like the linear trajectory. The average position error for the 

waypoint was also improved compared to the standalone 

PDR. This test result verified that the proposed DF-PDR 

system could accurately estimate the position of pedestrians 

with only an inertial sensor module without additional 

sensors.

In the last experiment, three experimenters walked three 

times each along a 300 m long trajectory. The location 

estimation results for the experiment are shown in Table 

4. As before, the return position error was confirmed by 

making the starting point, and the arrival point the same, 

and the value is 1.5 m. It can be seen that the proposed 

method estimates the position of pedestrians well. The 

position error is large compared to the first and second 

experiments because the length of the trajectory is long. Fig. 

9 is the result of drawing the estimated trajectory for one 

of the experiments on the building drawing. Pedestrians 

walked the entire building along the corridor, and the 

estimated trajectory is well represented, and it can be said 

that it is well estimated as it does not penetrate rooms or 

walls.

5. ConcLUSION

This paper proposed a particle filter-based DR-PDR system 

that fuses position information using IMUs attached to both 

feet. The proposed method estimates the horizontal position 

with a particle filter considering the systematic drift found 

in the DF-PDR system. Moreover, the particle estimated in 

each PDR system is fused using a Gaussian mixture to create 

a location measurement. The proposed method can be 

implemented in real-time in an embedded system because 

the particle filter estimates only the horizontal position, and 

EKF estimates the velocity and attitude. Compared with 

the standalone PDR system, it was confirmed through an 

experiment that the location estimation accuracy is improved. 

Since the position error that gradually increases over time 

can be corrected, it is expected to provide a relatively stable 

position estimation performance to firefighters, even 

considering the mission time.

Table 4.  Error of estimated position (Long).

Left Right
Mean Std. Mean Std.

Proposed 1.58 0.97 1.53 1.01

Table 3.  Error of estimated position (Square).

Left Right
Mean Std. Mean Std.

Standalone
Range constraint
Proposed

0.50
0.46
0.32

0.55
0.61
0.53

1.28
0.40
0.31

1.46
0.68
0.54

Fig. 9.  Estimated position using proposed DF-PDR system.
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