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ABSTRACT

This study builds a machine learning model optimized for clocks among various techniques in the field of artificial intelligence

and applies it to clock stabilization or synchronization technology based on atomic clock noise characteristics. In addition, the

possibility of providing stable source clock data is confirmed through the characteristics of machine learning predicted values

during holdover of atomic clocks. The proposed machine learning model is evaluated by comparing its performance with the

AutoRegressive Integrated Moving Average (ARIMA) model, an existing statistical clock prediction model. From the results of
the analysis, the prediction model proposed in this study (MSE: 9.47476) has a lower MSE value than the ARIMA model (MSE:
221.2622), which means that it provides more accurate predictions. The prediction accuracy is based on understanding the

complex nature of data that changes over time and how well the model reflects this. The application of a machine learning

prediction model can be seen as a way to overcome the limitations of the statistical-based ARIMA model in time series

prediction and achieve improved prediction performance.
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Fig. 1. Analysis of atomic clock data and its trends, seasonality, and residuals.

= 7)&o] 2 A7) 3ldtsio)
olof wha} B =20 xAof HAslE HAlHy rag 1=

slo] YAzpAA Q] A EAJS ulodst obg Ao g

&8 sty PHATE o] gt Az Hol| Hesin, 1

qsE71E /\]ﬂloﬂ of| =5 95t A% rulel AutoRegressive

2. MAIE oSS flet 2

2.1 3| ZEAQ| 4

UTCE 19725 E] Al3E =4 ZEAE, Mg A2t JF
5 7IREO 2 slo] tle 52 HEEE 7IXich UTCY] A2
AN G2 B S 7|9ho 2 REslEY, SAEgE =
(Bureau International des Poids et Mesures, BIPM)2] 2] s}o]|
AA Zr=] AZE 28 QA Y] AR A ST GNSS 94, §4l
A& 33l AR vl S E dlolHE 7|§Fe & gt} UTC(k)
t 3t BE Y A9/19e dehle REE, g
st L (Korea Research Institute of Standards and Science,
KRISS)®] ¢ 'KRIS'E& FHHC UTC(k)2] A4 3ol
Modified Julian Date (MJD)E 7]dko 2 5lnd, MID7} 49} 92 I
£ g 0A] UTCOl AJAISE Bl 4% o] HlolHe T g
b Hotx BIPMOﬂ A&, BIPMollAl&= ALGOS diel&&
Bl BA15E & o Circular TS 3] [UTC-UTC(k)] 2=
2kct. UTCr, & "whE(rapid) UTC'= WY S5 A7 o
HE HP%EE oAy, wiS [UTCr-UTC(K)] A7}
=2

F

mE

T
o

i o ki o r\‘

A EFA 0 HAS Y5t A1AE glolE] o1&
Zbof| what §isk dlojEf o] miE
gl a3t ot} o]t B F djEH el
ARIMA= 2715 H(AR), (D), o] =
T4 LA F A5t AAE dlojel ] & #AgT

https://doi.org/10.11003/JPNT.2024.13.1.111

Lee et al. (2020)0]| 4= KRISSOl|A] £ 0] & t]jo] 240
o]z (H6, H8)7} 104 Fofl ojwidh Zh& LrEhd Z1Q1A] ARIMA B
dle E35) of|25}a1, 0]5 BIPMoj|A] &FE5H= [UTCr-UTC(K)]
Asjol vl meko 2 &9 EES AE5IITH ARIMA B
< #835} [UTCr-Hn] pred - [UTCr-Hn] real®] o] 2k2}=Z-&
H6: 6.1 ns, H8: 6.2 nsQith. o]= 7|2 UTCr-UTC(KRIS)7} Xt}
A}Eo] oF 37 ns T, oF 6u) 7ke) A% BpAE BRI 4 9

At

2.3 UTCr-UTC(k)2| 0= S 2let Hal'd 2Y

2 =ZolAe diolee] WAl 28 55k ol /8
S} Self Supervised Learning 7% (Gui et al. 2023)2 % -85}0]
RNN 7]4ke] LSTM, GRU #|o]o{¢} Dense #|o]o] &2 Ao} &
g=upxlo g ool JLzsl9ict B4 2HQl Lee et al. (2020)
o} H|WE o8] Fig. 13} 7o EAL Kol MID 58620 ~ MID
567209) - ool 65 HioIE| & 28
="o||A]= MID 5626058 566197}%] 2] H|o|E] & sh&5)
o ShGH|o|Elof] AFRE X] 9F8- MID 586205 €] 587207}%]
£ o251 o, ZF A|- o sl mAlzd REle] eutzie] A
5 Hrir|&Ql YHAF X Mean Square Error, MSE)E H7}
shaact.

LSTM 10 to 12 107}12] 91451 A17F 9IS 9l o}, 1 o}
= R AIZE H919] 3he oAl Sshe Bdo|th LSTM ©ed o]
o2 FAdske A Btk Dense glo]ojel 23619S off o U
2 35S Helom, 7} glolofd] 7Rl Ao AA] KAk ot
gfulg]7} Qo= 71L& 3els1eith LSTM 100 to 10-2 10070e] A
SH AR HAE U o}, I ohs 1071 AR 1919 2hE ol
JetlEst A 0 2 7181
4 A FEH o WA o] A
K817 $13) £ = Rol A LSTMS] fredah 245} 34 A}
13} (batch normalization) & 2-g-513ict. v x] A4t
Qo] J%-© Table 19] LSTM 100 to 107} 72+,
40 AR AUk HAR O] o 22 Z|ThEF 4 gliTt.
GRU 100 to 102 1007] 2] 145 Al 915 o o}, T oh&

107}2] X171 919 g& &3k GRU 7]ke] meloltk, GRU

1_

.
ol

N

J
Ir o 4
ok ofx

ofo
(HN]
1-1:1



Sang Jun Kim et al,

Development of M L Model to HM Holdover Time 113

Table 1. Model configuration and performance evaluation for predicting the operation of H6.

Prediction model Model structure Total MSE
LSTM10to1l LSTM single 1000 2726.747
LSTM single 1000 + Dense 300 2314
LSTM single 3000 + Dense 300 8.184
LSTM single 100 + Dense 300 0.836/10.577
LSTM single 100 + Dense 100 42.563
LSTM single 100 + Dense 500 10.577
GRU 100t0 10 GRU single 1000 + Dense 200 14.769
GRU single 300 + Dense 100 34.422
GRU single 1000 + Dense 500 27.601
GRU 500 + GRU 500 + Dense 500 18.640.731
LSTM 100to 10 LSTM single 1000 + Dense 300 83283.938
LSTM single 300 + Dense 300 2913926.142
LSTM single 3000 + Dense 200 805881.700
LSTM 1000 + LSTM 1000 + DropOut 0.3 + Dense 1000 35190.731
LSTM 2000 + LSTM 2000 + DropOut 0.3 + Dense 2000 90784.440
LSTM 2000 + Dense 2000 + DropOut 0.3 15881197.766
FCN100to 10 Dense 50000 + DropOut 0.3 (linear) 3.373
Dense 100000 + DropOut 0.3 (linear) 8.795
Dense 50000 + DropOut 0.3 (Relu) 14.333
Dense 100000 + DropQOut 0.3 (Relu) 18.324
Dense 50000 + Dense 5000 + DropOut 0.3 (linear) 9.763
Dense 20000 + DropOut 0.3 (linear) 2.993
Dense 10000 + DropOut 0.3 (linear) 4.842
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Fig. 2. Prediction method for holdover situation

Fig. 3. Performance comparison between statistical-based models and

deep learning-based models.
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