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1. IntroductIon

An Inertial Measurement Unit (IMU) provides high-rate 

acceleration and angular velocity measurements that can 

be used to estimate vehicle’s navigation solution. However, 

when used alone, the positioning accuracy will be degraded 

over time due to accumulated random errors and biases 

in IMU measurements. To reduce the effects of those IMU 

errors, IMU is integrated with other sensors through such as 

Kalman Filter (KF), wavelet-based algorithms, and machine 

learning algorithms, to name a few (Han et al. 2020).

For navigation purposes, an integrated navigation system 

(INS) with an IMU and Global Navigation Satellite Systems 

(GNSS) have been widely used to provide a continuous 

high-bandwidth navigation solution via a KF. Among 

various architectures of INS, a loosely coupled KF is one 
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of the popular algorithms (Meiling et al. 2017, Wang et al. 

2020). In the loosely coupled KF, GNSS correct IMU errors 

while IMU measurements fill the gaps in between the slower 

GNSS position updates. Therefore, the positioning accuracy 

of INS is mainly determined by the quality of GNSS signals.

Unlike IMU, however, GNSS signals are susceptible to 

surrounding environment such that its quality becomes 

unreliable in urban canyon, tunnels, and other areas 

where GNSS signals are interfered (Cui & Ge 2003). When 

GNSS are not available, proper corrections to IMU errors 

cannot be made in the conventional KF based IMU/GNSS 

integration, which can lead to the divergence of navigation 

solutions. Recently, with the advancement of Artificial 

Intelligence (AI) and related technologies, various AI-based 

algorithms have tackled this problem, which differs in the 

aspects of overall integration architectures and network 
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structures with their own inputs and outputs (Bitar et 

al. 2020). Overall, the model of the AI-based IMU/GNSS 

integration can be classified as the ones with KF or the 

others without KF.

The AI models with KF attempted to improve the 

performance of  KF state estimations and increase 

positioning accuracy during GNSS outages. Combined with 

KF, outputs of the AI model are either used to correct KF 

error state estimates (Chen et al. 2015, Belhajem et al. 2018), 

and (Wei et al. 2021) or used to generate GNSS pseudo-

measurements (Yao et al. 2017, Zhang 2019, Fang et al. 

2020). These approaches used various machine learning 

models including multi-layer perceptron, artificial neural 

network (Yao et al. 2017), auto regressive models (Chen et 

al. 2015), Neural Network (Belhajem et al. 2018, Wei et al. 

2021), Long Short-Term Memory (LSTM) (Zhang 2019, Fang 

et al. 2020) with different input data.

The AI models without KF avoided the mathematical 

modeling process and tried to capture the intricate IMU 

error characteristics in a network. Reference (Jaradat 

& Abdel-Hafez, 2017) proposed an additive nonlinear 

autoregressive exogenous (ANARX) architecture to fuse GPS 

and IMU measurements. Reference (Adusumilli et al. 2013) 

used a random forest regression approach to overcome the 

performance degradation of artificial neural network (ANN) 

particularly when a non-linear complexity is improperly 

treated. Reference (Noureldin et al. 2011) developed an 

IMU-GNSS integration filter with an adaptive neuro-fuzzy 

inference system that combines the fuzzy logic with a 

neural network. Reference (Saadeddin et al. 20143) used 

input delayed networks to model INS position and velocity 

errors with current and past INS mechanization outputs. 

Some researchers used extreme learning machine (ELM) 

with additional wavelet denoising filter (Abdolkarimi et al. 

2018, Wang et al. 2018, Li et al. 2020) to better model IMU 

mechanization errors.

The previously mentioned prior arts appear to neglect the 

significant correlation between a vehicle's motion over time, 

and many have overlooked the importance of integrating 

sequential IMU and GNSS measurements into AI models to 

connect past and present navigation solutions. Therefore, 

this paper aims to derive navigation solution based on 

time-series sensor data from multiple previous epochs as 

input, rather than from a single-epoch data, as is done with 

neural networks. With this point, the paper further explores 

the IMU-GNSS integration problem using LSTM network 

that trained from the sequences of IMU measurements, 

mechanization solutions, and GNSS measurements to 

provide more reliable navigation solutions during GNSS 

outages. In this paper, as a preliminary study for designing 

LSTM networks to derive navigation solution during GNSS 

outages, a specific input-output configuration of the LSTM 

network is proposed, and the results are provided as a 

function of the network sequence length and the number 

of hidden units for each GNSS outage time on simple 

vehicle trajectories. Two distinct LSTM networks were 

used to estimate attitude and velocity, respectively, and 

the attitude information computed from positions of three 

GNSS receivers were used to enhance the network training 

precision. For the two-dimensional path of a wheeled robot 

mainly covered in this paper, position information can 

be estimated using only heading values computed from 

the positions of two GNSS receivers. However, this paper 

used three GNSS receivers to compute three-axis attitude 

information with the intention of extending this method to 

platforms having more complex trajectories, such as drones.

The remainder of the paper begins with the background 

on the loosely coupled KF for IMU-GNSS integration. Then, 

Section 3 introduces the proposed LSTM network-based 

method to derive navigation solution during GNSS outages. 

Details on the experimental datasets used for verification 

are described in Section 4 and the performance evaluation 

results on the proposed approach are summarized in 

Section 5. Section 6 provides the conclusion of the paper.

2. BAcKGround

This section briefly discusses IMU mechanization 

processes and the loosely coupled IMU-GNSS KF with a 

closed-loop correction.

2.1 IMU Mechanization

A schematic process of an IMU mechanization is shown 

in Fig. 1. By integrating the measurements of angular rates, 

ω~b, and specific forces, a~b, a navigation solution in Earth 

Centered Earth Fixed (ECEF) frame is computed through 

the following three steps; attitude update, velocity update, 

and position update.

Assuming that the IMU sensor frame is perfectly 

aligned with the vehicle’s body frame, the time derivatives 

of attitude, velocity, and position in ECEF frame are 

formulated as follows (Groves 2013):
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body frame (forward-right-downward), respectively. 

C
·
b
e represents the time derivatives of the coordinate 

transformation matrix from the body frame to the ECEF 

frame. v· e and r·e are the time derivatives of velocity and 

position vector in the ECEF frame, respectively. Ωb is a skew-

symmetric matrix of the angular rates in the body frame, 

while Ωe denotes a skew-symmetric matrix of the Earth’s 

angular velocity in ECEF frame. ab is a specific force vector 

acting on the body frame. 

body frame to the ECEF frame.  ̇  and  ̇  are the time derivatives of velocity and position vector 
in the ECEF frame, respectively.    is a skew-symmetric matrix of the angular rates in the body 
frame, while    denotes a skew-symmetric matrix of the Earth‟s angular velocity in ECEF frame. 
   is a specific force vector acting on the body frame.    is a gravitational acceleration vector in 
the ECEF frame which is a function of vehicle‟s position. 

Then, the vehicle‟s navigation solution on  -th step can be calculated by integrating Eq. (1) 
through Eq. (3) as follows. 
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where δψe is the attitude error. δve and δre are velocity and 

position errors in the ECEF frame, respectively. δba and δbg 

are accelerometer and gyro bias errors, respectively.

The time derivatives of navigation errors are:

Fig. 1. Schematic process of an IMU mechanization.

Fig. 2. Architecture of IMU-GNSS loosely coupled KF integrated navigation system. The position and attitude of 
a vehicle calculated from three GNSS antennas measurements are denoted as r~e and φ~ e, respectively.
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where, Kk is Kalman gain matrix. Hk is a measurement 

matrix. Rk is a measurement noise covariance matrix and 

δzk is a measurement innovation. x^k
+ is a posteriori estimated 

state and Pk
+ is a corresponding state covariance matrix.

In the closed loop configuration, the estimated error state 

from the KF is fed back to correct the IMU mechanization 

solution. The correction on navigation solution is applied as 

follows:
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Recurrent Neural Network (RNN) has strength on processing sequential data such as time 
series data, signals and natural language by storing past information in hidden states. However, 
RNN is unable to learn the long-term dependencies due to vanishing and exploding gradient 
problems (Bengio et al. 1993). Therefore, Long Short-Term Memory (LSTM) network has been 
proposed to deal with the vanishing and exploding gradient problems of the traditional RNN. 
The LSTM network shown in Fig. 4 uses several gates and a cell to selectively preserve and 
forget long-term past information (Hochreiter & Schmidhuber 1997). 

In this study, LSTM network was implemented to build a relationship between a navigation 
solution from IMU measurements through mechanizations and a precise RTK level navigation 
solution to provide accurate navigation solution during GNSS outages. The main objective of the 
trained LSTM network is to predict navigation solution on GNSS outages based on the sequence 
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Although, the LSTM network can be used to provide corrections on IMU mechanization 
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processing sequential data such as time series data, signals 

and natural language by storing past information in hidden 

states. However, RNN is unable to learn the long-term 

dependencies due to vanishing and exploding gradient 

problems (Bengio et al. 1993). Therefore, Long Short-Term 

Memory (LSTM) network has been proposed to deal with 

the vanishing and exploding gradient problems of the 

Fig. 3. Arrangement of three orthogonally placed GNSS antennas for 
attitude and position measurements.
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traditional RNN. The LSTM network shown in Fig. 4 uses 

several gates and a cell to selectively preserve and forget 

long-term past information (Hochreiter & Schmidhuber 

1997).

In this study, LSTM network was implemented to build 

a relationship between a navigation solution from IMU 

measurements through mechanizations and a precise RTK 

level navigation solution to provide accurate navigation 

solution during GNSS outages. The main objective of the 

trained LSTM network is to predict navigation solution on 

GNSS outages based on the sequence of IMU measurements 

and previous navigation solution.

Although, the LSTM network can be used to provide 

corrections on IMU mechanization solution, the proposed 

method provides navigation solutions directly, instead of 

the INS errors. The reason for that is that a low-cost IMU 

typically has large noise, and its bias is subject to change 

in short time. Therefore, the actual IMU errors in tests 

may become different from the ones in the train dataset 

and could cause a significant divergence of the navigation 

solution. In line with the above network design approach, 

two single layer LSTM networks were used to provide direct 

attitude and velocity solutions from the sequence of IMU 

measurements and IMU mechanization solutions.

As the trained LSTM network generates navigation 

solutions on GNSS outages, the output rate for the network 

was set to be the same as a GNSS output rate. Thus, IMU 

measurements were averaged according to the GNSS output 

rate, and averaging measurements also have an effect on 

reducing measurement noise. By employing LSTM network, 

input data for the network have a sequential form, while 

the outputs of the network are current attitude and velocity 

estimates.

The proposed LSTM network for attitude estimates can 

be expressed as,

have a sequential form, while the outputs of the network are current attitude and velocity 
estimates. 

The proposed LSTM network for attitude estimates can be expressed as, 
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Here, f(∙) is the function defined by the trained LSTM 

network and SL stands for the sequence length used for 

t-th epoch navigation data. The superscript n denotes the 

NED frame. ω- band a-b are the averaged angular velocity and 

acceleration measurements. Both networks were designed 

to have same sequence length and the number of hidden 

units used.

3.1 How to Train the LSTM Network

When GNSS measurements are available, a loosely 

coupled KF produces navigation solutions, and the 

network works in a training mode. Fig. 5 shows the overall 

procedure when GNSS measurements are available. 

During the training process, the target output of each 

network is the attitude and velocity computed from GNSS 

measurements while inputs are IMU measurements and 

IMU mechanization solution as described in Eqs. (23) and 

(24).

3.2 How to Test on GNSS Outages

Fig. 6 shows a way to use trained LSTM network on GNSS 

outages. The trained network would completely replace 

KF on GNSS outages. Attitude estimates from the attitude 

estimation network will be reused as inputs for the velocity 

network to predict the velocity of a vehicle. And the vehicle’s 

Fig. 5. Process of training LSTM network when GNSS measurements are 
available. The input data for the network has a following sequential form, 
xseq =[xt-SL+1, …,xt-1, xt] where SL stands for the sequence length of the 
network.

Fig. 4. Schematic architecture of LSTM block with gating units. ft, it ot  and 
C
~

t  are forget gate, input gate, output gate and cell input state, respectively.
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current position is calculated from the previous position 

and current velocity estimates. In this case, as the output 

rate of the network was set as 1 Hz, current position can be 

calculated by adding velocity estimates on previous position 

solution. Then, the navigation solution on GNSS outages is:

have a sequential form, while the outputs of the network are current attitude and velocity 
estimates. 

The proposed LSTM network for attitude estimates can be expressed as, 
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4. dAtASEt dEScrIPtIon

This paper proposed a method for determining the 

attitude and position of vehicles in urban area where 

frequent GNSS outages exist. To implement and evaluate 

our approach, experimental data were collected from a 

mobile robot with an IMU and three GNSS antennas. These 

three GNSS antennas were used to provide RTK based 

precise position as well as attitude information of the mobile 

robot shown in Fig. 7. With precise RTK based position and 

attitude information, the network was trained to have a 

higher level of accuracy. Train and test data were obtained 

from experiments conducted in the same environment. For 

the test data, to simulate GNSS outages, the GNSS data were 

removed from the actual experimental data.

A MPU9250 IMU (InvenSense Inc. 2016) and three Ublox 

F9P GNSS receivers (U-blox AG. 2021) were used as onboard 

sensors. The sampling rates of IMU and GNSS were 200 Hz 

and 1 Hz, respectively. The specifications of MPU 9250 and 

Ublox F9P receiver are summarized in Table 1.

The trajectories used for the experiment are shown in 

Fig. 8. Two types of simple trajectories were tested, and we 

named each dataset as “oval shape driving” and “figure 

eight driving”. The blue lines in the figures represent the 

routes for the training data, and the red dotted line are 

used to test the trained network on GNSS outages. Since 

Fig. 6. Using trained LSTM network on GNSS outages. The input data for 
the network has a following sequential form, xseq =[ xt-SL+1,…, xt-1, xt] where 
SL stands for the sequence length of the network.

Fig. 7. Configuration of mobile robot and onboard sensor system.

Fig. 8. Two trajectories of mobile robot from the experiments, oval shape 
driving (top) and figure eight driving path (bottom). The average speed in 
oval shape driving was 2.79 m/s and 1.48 m/s in figure eight driving.

Table 1. Sensor specification of MPU9250 & Ublox F9P.

Device Sensor
Sensor spec

Error type Scale

MPU9250

Accelerometer
Noise spectral density (µg/√hz)
Random walk (m/s2/√h)

300
1

Gyroscope
Bias instability (°/h)
Noise spectral density (°/s/√hz)
Random walk (°/√h)

15
0.01
0.01

Ublox F9P GNSS (RTK)
Horizontal position error (cm)
Vertical position error (cm)

1
3
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the proposed network estimates the attitude first, then 

estimates the velocity to compute the position, scenarios 

where the vehicle’s attitude changes continuously were 

chosen to verify the proposed method, such as oval shape, 

figure-eight shape driving trajectories. In both trajectories, 

the sensor data with the first 600 seconds were used to train 

the network, and the data of the remaining 60 seconds of 

the data were used to test the positioning performance of 

the proposed LSTM network on GNSS outages.

Fig. 9 shows IMU measurements during the oval shape 

driving experiment. Also, the blue line indicates training 

dataset, while red dashed line shows test dataset. The black 

line shows IMU measurements averaged for a second to be 

synchronized with the output rate of the network and those 

values were used as input data for the network.

5. rESuLtS

The training of the network was performed on a single 

i7-9750H CPU using Mathworks’s Deep Learning toolbox. 

The hyperparameters used to train the network are shown 

in Table 2. The adaptive moment estimation optimizer 

(ADAM) was used for stochastic optimization. The learning 

rate and other hyperparameters were chosen from several 

tests on loss convergence during the training process.

The positioning performance during the test on GNSS 

outages varied depending on the choice of the number of 

hidden states and sequence length used as shown in Fig. 

10. It can be observed that the RMSE position errors overall 

increase as the duration of GNSS outages escalates from 20 

to 60 seconds. Also, the higher number of hidden units and 

the longer number of the sequence length tend to reduce 

RMSE in both driving trajectories. Meanwhile, in the case of 

figure eight driving, a few results showed better results on 

a short sequence length. Since the attitude changed more 

sharply during the figure eight driving, the use of the longer 

sequence rather interfered estimating current vehicle’s 

attitude.

Fig. 11 shows the resultant trajectories of INS and the 

trained LSTM network for 60 seconds GNSS outages from 

the two experiments. The network had the sequence length 

of 15 and 150 hidden units for the oval shape driving case 

and sequence length of 5 and 100 hidden units for the 

figure eight driving, which resulted in the best performance 

during 60 seconds GNSS outages among all combination of 

the sequence lengths and the number of hidden units used. 

Fig. 9. IMU measurements during the oval shape driving.

Fig. 10. Results on each parameter combination on oval shape driving 
case (top), figure eight driving (bottom).

Table 2. Hyperparameters used to train the network.

Parameters Value
Initial learn rate
Gradient decay factor
Squared gradient decay factor
Learn rate drop period
Learn rate drop factor
Mini batch size

0.001
0.95

0.999
150
0.2
31
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The RMSE of INS and the LSTM network are summarized 

in Table 3. In both cases, RMSE of the LSTM network was 

reduced by more than 90% compared to INS.

The previous two experimental data have a relatively 

simple repeating patterned trajectory. Therefore, to 

evaluate the performance of the proposed network in non-

uniform actual vehicle driving scenarios, we downloaded 

RTK positions for 640 seconds of a driving vehicle (ETRI AI 

Nanum 2021) and shown in Fig. 12. The corresponding IMU 

measurements were obtained from Mathworks’s Sensor 

fusion and Tracking toolbox with a typical low-cost IMU 

specification (El-Sheimy et al. 2008) and MPU 9250. The 

network was trained using the RTK position and simulated 

IMU measurements from 600 seconds driving data. The 

remaining 40 seconds data were used for the test.

In the case of vehicle driving scenario, the shorter the 

sequence length, the lower the RMSE as can be seen in 

Fig. 13. This also implies that for a relative fast-moving 

vehicle, long previous recursive information is not helpful 

in estimating the current vehicle’s state. Fig. 14 shows 

test results on 40 seconds GNSS outages. The predicted 

LSTM closely matches with the reference trajectory and 

the positioning solution of the LSTM network is improved 

Fig. 11. Positioning results on oval shape driving case (top), figure eight 
driving (bottom) for 60 seconds GNSS outages.

Table 3. Position RMSE on 60s GNSS outages.

RMSE
INS LSTM (Best)

East (m) North (m) East (m) North (m)
Test 1
Teat 2

416.36
345.72

93.42
474.89

2.47
3.38

2.84
4.51

Fig. 12. Reference vehicle driving route data at the speed of 13.93 m/s 
divided into train and test data.

Fig. 13. Results on each parameter combination on highway driving data.

Fig. 14. Test results on 40 seconds GNSS outages. RMSE from INS are 42.18 
m (East), 118.72 m (North), while RMSE from the trained network are 1.48 
m (East), 3.48 m (North).
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by more than 90% compared to INS. Further research is 

necessary on finding an optimal network architecture to 

ensure near real-time application with various vehicle 

dynamic motions and path, which will require more data 

and information to build a rigorous model.

6. concLuSIonS

This paper proposed using LSTM to provide more 

reliable navigation solutions than using INS during 

GNSS outages. The proposed algorithm consists of two 

independent LSTM networks to predict current attitude and 

velocity of the vehicle individually from the sequence of 

IMU measurements and mechanization solutions. During 

GNSS outages, the outputs of the trained network are used 

to compute position solutions.  The proposed method has 

been verified with both experimental data and simulated 

data and showed more than 90% improvements on 

positioning accuracy compared with INS on GNSS outages.
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