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1. 서론

무인이동체의 군집 운용은 정찰•재난 대응•물류•군사 작

전 등 다양한 분야에서 활용 범위를 빠르게 넓히고 있다. 특히 공

중 급유나 근접 편대 비행처럼 기체 간 거리가 매우 짧은 임무에

서는 센티미터(cm)급 상대 위치 정확도가 필수 요건으로 요구된

다. 이러한 임무의 안정적 수행을 위해 상대 위치 정확도뿐 아니

라 항법 무결성(integrity) 보장이 필수적이다. 항법 무결성은 민

간 유인 항공분야에서 수십년간 활용되어온 개념으로, 무결성 보

단기선 환경에서 측정 도메인 모니터를 활용하는 CDGNSS 시스템의 
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ABSTRACT

Swarm operations for unmanned vehicles are expanding across reconnaissance, logistics, and defense applications. Missions 

with tight inter-vehicle spacing—such as aerial refueling and close-formation flight—require centimeter-level relative 

positioning and navigation integrity. This paper presents a protection level (PL) computation method for carrier phase 

differential GNSS (CDGNSS) that operates with measurement-domain monitors. We derive the biases in the Kalman filter 

estimates caused by undetected faults with consideration of the recursive nature of the filters. The impacts of these biases 

on fixed-baseline solutions and ambiguity resolution are separately derived under the worst-case scenario. These impacts 

are then combined to compute the PL. The performance of the proposed method is assessed through simulations assuming 

the use of an ephemeris monitor. The computed PLs are compared with PLs computed using a Solution Separation (SS)-

based method. The obtained results show that, for short baselines, the proposed method yields smaller PLs and a lower 

computational burden by avoiding parallel multi-subset filtering. Sensitivity analyses across inter-vehicle separations indicate 

that the performance degrades with increasing baseline distance, whereas the benefits are strongest at short separations. 

Given these characteristics the approach is well-suited to tightly spaced multi-vehicle operations.
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장을 위해 고장 검출 기능과 보호수준(Protection Level, PL) 산출 

기능이 요구된다. 보호수준은 높은 확률(예. 99.99999%)로 실제 

위치가 보호수준 내부에 있음을 보장하는 항법 오차에 대한 경계

로서 정의된다. 산출된 보호 수준과 운용 어플리케이션에서 정의

하는 허용 위치 오차 한계를 비교하여 안전성을 보장한다.

위성항법 시스템을 활용하여 cm급 위치 정확도를 달성하

기 위해서는 반송파 측정치를 활용하는 것이 필수적이다. 현

재 운용중인 반송파 기반 고정밀/고무결성 보장 항법 시스템

으로 Joint Precision Approach And Landing System (JPALS)
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가 있다 (Rife et al. 2008). JPALS는 Carrier-phase Differential 

GNSS (CDGNSS) 기반 시스템으로, 전투기의 항공 모함 착륙

을 위해 개발되었다. JPALS는 고장 검출을 위해 Ground-Based 

Augmentation System (GBAS)에서 활용하는 고장 모니터를 차

용하였다 (Rife et al. 2008). 보호 수준의 경우 고장 모니터에서 

검출하지 못한 미검출 고장까지 고려하여 산출되어야 하지만 공

개 문헌 기준으로는, JPALS는 정상 상황만을 고려한 보호 수준을 

산출한다 (Rife et al. 2008). 이는 군 운용 특성상 다중화 센서, 고

가 장비, 그리고 조종사 감시가 전제된 체계이므로, 미검출 고장

이 최종 보호수준 값에 주는 영향이 매우 작다고 판단하여 이를 

고려하지 않은 것으로 추측된다. 하지만, 군용 시스템인 JPALS와

는 달리 민간 무인이동체의 경우에는 고가•다중화 센서 구성이 

현실적으로 어렵고, 운용 중 인간 감시가 부재하므로 미검출 고

장까지 고려한 보호 수준 산출 체계가 요구된다.

반송파 기반 시스템에서 미검출 고장을 고려하여 보호수준

을 산출하는 것은 미지 정수 해결 과정 때문에, 코드 기반 시스

템보다 더욱 복잡하다. 이는 미지 정수 해결 과정이 비선형적이

고 이산(discrete)적인 특징을 갖기 때문에 미검출 고장이 미지 

정수 해결과정에 미치는 영향을 정확히 정량화 하기 어렵기 때

문이다. 이러한 어려움을 해결하기 위해 Khanafseh et al. (2013)

과 Khanafseh & Pervan (2011)은 Solution Separation (SS) 기

반의 위치 도메인 모니터를 활용하였다. SS 기반 모니터는 기존 

코드 기반 시스템을 위해 개발된 방법으로 모든 위성을 사용하

여 계산된 항법해와 고장이 의심되는 위성의 측정치를 제외하

고 계산한 항법해의 차이를 활용하여 고장을 검출한다 (Blanch 

et al. 2015). 이러한 방법은 미검출 고장을 위치 도메인에서 정의

할 수 있기 때문에, 미검출 고장의 영향을 보호 수준 산출에 용이

하게 고려할 수 있다. El-Mowafy & Kubo (2017, 2018)은 이 방법

을 CDGNSS 기반 기술 중 하나인 Real Time Kinematic (RTK)과 

다양한 센서를 융합하는 시스템에 적용하여 무결성을 보장하였

다. 또한, Zhang et al. (2023)과 Zhang & Wang (2023)은 SS 기반 

방법을 기준국 네트워크를 활용하는 Precise Point Positioning-

RTK 시스템에 적용하였으며, Zhang & Wang (2024)는 미지 정

수 해결 과정이 SS 기반 모니터에 미치는 영향을 분석하였다. 이

러한 사전 연구들은 반송파 기반 시스템에 SS 모니터를 적용할 

때, 기존 코드 기반 시스템에서 활용되는 특징을 수학적 검증 없

이 적용하였는데, Min et al. (2025)는 이 특징들이 반송파 기반 시

스템에서도 적용 가능함을 수식적으로 검증하였다. 이처럼 반송

파 기반 시스템에서 SS 기반 무결성 보장 방법은 활발히 연구되

었지만, 다수의 항법필터를 병렬로 구동해야 하는 SS 기법 특성

상, 높은 연산 부하가 발생한다.

무결성 보장을 위한 또 다른 접근 방식은 JPALS에서 활용하

는 GBAS 지상 모니터와 같은 측정치 도메인 모니터를 활용하

는 것이다. 측정치 도메인 모니터는 SS 기반 방법과 비교하여 상

대적으로 낮은 연산량이 요구된다. 그러나 SS 기반 모니터와 달

리, 이 모니터는 미검출 고장이 측정치 도메인에서 정의되기 때

문에 보호 수준 산출에 어려움이 있다. 측정치 도메인 모니터에

서 검출되지 못한 미검출 고장의 영향을 보호 수준 산출에 반영

하기 위해서는 측정치 도메인의 미검출 고장을 위치 도메인으로 

전파하는 과정이 필요하다. 이 과정에서 고장이 전파되는 메커니

즘은 미지 정수 해결 과정으로 인해 이산적(discrete)이고 비선

형적인 특성을 포함한다. 이는 측정치 도메인 기반 모니터를 활

용하는 CDGNSS 시스템의 보호 수준 산출을 복잡하게 만든다. 

Khanafseh et al. (2013)는 측정치 도메인에서 발생 가능한 고장

의 최대 크기를 사전에 알고 있는 상황에서 CDGNSS 기반 시스

템의 보호 수준을 산출하는 방법을 제안하였다. 해당 방법은 고

장이 보호 수준 산출에 미치는 영향을 두 개의 요소로 분리하여, 

각 요소를 독립적으로 바운드하였다. 하지만 해당 연구에서는 칼

만 필터를 사용하였음에도 불구하고, 고장이 칼만 필터의 재귀적 

특성에 의해 전파되는 영향을 고려하지 않았다.

본 논문에서는 측정치 도메인 모니터를 활용하는 CDGNSS에

서 보호 수준 산출 방법을 제안한다. 고장으로 인해 측정치에 편

향(bias)이 발생할 경우, 1차적으로 항법 필터에 편향이 발생하

며, 2차적으로 미지 정수 추정 과정에서 잘못된 추정이 발생하게 

된다. 이러한 영향이 모두 통합되어 최종적으로 항법해에 편향

이 발생한다. 보호 수준은 이러한 통합적 영향을 반영하여 산출

되어야 하며, 미검출 고장 중 가장 큰 항법해 편향을 유발하는 최

악의 상황까지 고려되어야 한다. 본 연구에서는 Khanafseh et al. 

(2013)의 방법처럼 용이한 보호 수준 산출을 위해 각각의 영향을 

독립적으로 고려하여 보호 수준을 산출하였다. 항법 필터에 최악

의 편향을 발생시키는 상황과 미지 정수 추정 과정에서 최악의 

상황을 유발하는 상황을 독립적으로 도출하고, 각 상황을 보수적

으로 통합하여 보호 수준을 산출하였다. 이때, 미검출 고장이 칼

만 필터에 의해 재귀적으로 전파되는 영향까지 수식적으로 도출

하여 함께 반영하였다. 제안하는 방법의 성능 분석을 위해 GBAS

의 측정치 도메인 모니터 중 하나인 위성 궤도력 모니터를 사용

하는 상황에 대하여 시뮬레이션을 수행하였다. 시뮬레이션을 통

해 보호 수준을 산출하고 Min et al. (2025)에서 제안한 위치 도메

인 모니터 기반 시스템을 활용하는 상황과 비교하였다.

본 논문의 구성은 다음과 같다. 2장에서는 CDGNSS 시스템의 

항법 알고리즘에 대해 기술한다. 3장에서는 보호 수준 산출 방법

에 대해 설명하며, 4장에서는 시뮬레이션 결과를 제시한다. 마지

막으로 5절에서는 결론을 도출한다.

2. CDGNSS 시스템 항법 알고리즘

이번 장에서는 CDGNSS 시스템의 항법 알고리즘에 대해 기

술한다. 2.1절에서는 본 연구에서 활용하는 CDGNSS 알고리즘에 

대해 간략히 정리하였고, 2.2절에서는 고장이 항법 필터에 미치

는 영향을 수식적으로 도출하였으며, 2.3절에서는 최종 항법해에 

미치는 영향을 도출하였다.

2.1 항법 알고리즘

이번 절은 CDGNSS 항법 시스템에서 활용하는 항법 알고리즘

에 대해서 간략히 정리하였다. CDGNSS는 상대 항법 시스템으로 

두개의 수신기에서 수신한 GNSS 측정치를 사용하여 두 수신기

간 상대 벡터를 산출한다. 두 수신기간 거리가 매우 짧아 대부분

의 대류권/전리권 오차가 제거되는 경우에 대하여, 시간 kth에서 
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CDGNSS 측정치는 Eq. (1)과 같이 표현된다 (Teunissen 2002).

4 
 

2. CDGNSS 시스템 항법 알고리즘 
 
이번 장에서는 CDGNSS 시스템의 항법 알고리즘에 대해 기술핚다. 2.1절에서는 본 연구에서 

홗용하는 CDGNSS 알고리즘에 대해 갂략히 정리하였고, 2.2절에서는 고장이 항법 필터에 미치는 

영향을 수식적으로 도출하였으며, 2.3절에서는 최종 항법해에 미치는 영향을 도출하였다. 
 
2.1 항법 알고리즘 
 
이번 절은 CDGNSS 항법 시스템에서 홗용하는 항법 알고리즘에 대해서 갂략히 정리하였다. 

CDGNSS는 상대 항법 시스템으로 두개의 수싞기에서 수싞핚 GNSS 측정치를 사용하여 두 

수싞기갂 상대 벡터를 산출핚다. 두 수싞기갂 거리가 매우 짧아 대부분의 대류권/전리권 오차가 

제거되는 경우에 대하여, 시갂    에서 CDGNSS 측정치는 Eq. (1)과 같이 표현된다 (Teunissen 
2002). 
 

                      ( )  
 
여기서   는 이중차분 코드 및 반송파 측정치를 의미하며,   는 상대 벡터,   는 이중차분 미지 

정수 벡터를 나타낸다.   는 고장 벡터를 의미하며, 고장이 발생하지 않은 정상 상황에서는 0 

벡터이다.    는   에 대핚 잡음으로 평균이 0이고 공분산 행렬   인 정규분포  (    )를 

따른다고 가정된다.   와   는 각각   와   에 대응되는 측정치 행렬을 나타낸다. 

Eq. (1)에서 칼맊 필터를 홗용하여 상대 벡터와 미지 정수 벡터 추정치를 산출핚다. 이때, 미지 

정수가 정수라는 성질은 무시하고 각 추정치를 산출하며, 각각은 상대 벡터 실수해  ̂  및 미지 

정수 실수해  ̂ 라 명명핚다. 이 실수해들은 Eq. (2)와 같이 정규 분포를 따른다. 
 

[ ̂  ̂ 
]  ([

     ̂ 
     ̂ 

]  *
  ̂   ̂  ̂ 
  ̂  ̂   ̂ 

+)   ( )  

 
여기서   ̂ 와   ̂ 는 각각  ̂ 와  ̂ 의 필터 분산 행렬을 의미하며,   ̂  ̂ 와   ̂  ̂ 는  ̂ 와  ̂ 의 필터 

공분산 행렬을 의미핚다.   ̂ 와   ̂ 는 고장에 의해  ̂ 와  ̂ 에 발생하는 편향을 나타내며, 정상 

상황에서는 0 벡터이다. 

다음 과정으로 미지 정수의 정수 성질을 반영하기 위해, 산출된 미지 정수 실수해는 정수로 

변홖되며, 이때 미지 정수 실수해는 Z-변홖을 통핚 역상관 과정과 Integer Bootstrapping (IB) 과정을 

거칚다 (Teunissen 2002). Z-변홖은 미지 정수 실수해 갂 졲재하는 상관관계를 최소화시켜 미지 
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최소자승법과 반올림을 결합핚 형태로 실수해를 정수해로 변홖시키는 역핛을 핚다 (Teunissen 

2005). 미지 정수 실수해로부터 변홖된 정수해는 미지 정수 고정해  ̌ 라고 명명핚다. 미지 정수 
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여기서 yk는 이중차분 코드 및 반송파 측정치를 의미하며, bk는 상

대 벡터, ak는 이중차분 미지 정수 벡터를 나타낸다. fk는 고장 벡

터를 의미하며, 고장이 발생하지 않은 정상 상황에서는 0 벡터이

다. εyk는 yk에 대한 잡음으로 평균이 0이고 공분산 행렬 Rk인 정규

분포 N(0,Rk)를 따른다고 가정된다. Bk와 Ak는 각각 bk와 ak에 대응
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고 각 추정치를 산출하며, 각각은 상대 벡터 실수해 b
^

k및 미지 정

수 실수해 a^ k라 명명한다. 이 실수해들은 Eq. (2)와 같이 정규 분

포를 따른다.
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여기서 Qb^k와 Qâk는 각각 b
^

k와 a^ k의 필터 분산 행렬을 의미하며, 

Qb^k âk와 Qâk b^k는 b
^

k와 a^ k의 필터 공분산 행렬을 의미한다. μb^k와 

μ(ak)는 고장에 의해 bk와 ak에 발생하는 편향을 나타내며, 정상 상

황에서는 0 벡터이다.

다음 과정으로 미지 정수의 정수 성질을 반영하기 위해, 산출

된 미지 정수 실수해는 정수로 변환되며, 이때 미지 정수 실수해

는 Z-변환을 통한 역상관 과정과 Integer Bootstrapping (IB) 과

정을 거친다 (Teunissen 2002). Z-변환은 미지 정수 실수해 간 존

재하는 상관관계를 최소화시켜 미지 정수 추정 성공 확률을 향상

시키는 역할을 한다 (Teunissen et al. 1997). IB 과정은 조건부 최

소자승법과 반올림을 결합한 형태로 실수해를 정수해로 변환시

키는 역할을 한다 (Teunissen 2005). 미지 정수 실수해로부터 변

환된 정수해는 미지 정수 고정해 a^ k라고 명명한다. 미지 정수 고

정해가 실제 미지 정수와 동일하게 산출되는 경우를 Correct Fix 

(CF)라고 하며, 그렇지 않은 경우 Incorrect Fix (IF)라 한다. 고장

이 없는 정상 상황에서도 잡음에 의해 IF 상황이 발생할 수 있으

며, 반대로 고장이 발생한 상황에서도 고장의 크기와 잡음에 따

라 CF 상황이 발생할 수 있다. 산출된 미지 정수 고정해는 정밀한 

상대 벡터 추정치, 즉 상대 벡터 고정해 b
^

k 산출을 위해 Eq. (3)과 

같이 활용된다 (Teunissen 2002).
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업데이트 공분산 행렬   을 Eq. (6)와 같이 정의하였다. 
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홗용하거나 Constant Velocity 모델을 적용하여 상대 벡터 다이나믹을 표현핛 수 있다. 이러핚 

확장된 모델을 적용핛 경우, 속도 벡터를 필터에서 함께 추정해야 핚다. 특히 Constant Velocity 
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와 측정치 업데이트는 Eq. (4)와 (5)를 통해 이루어진다 (Simon 

2006).
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(4)
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고정해가 실제 미지 정수와 동일하게 산출되는 경우를 Correct Fix (CF)라고 하며, 그렇지 않은 

경우 Incorrect Fix (IF)라 핚다. 고장이 없는 정상 상황에서도 잡음에 의해 IF 상황이 발생핛 수 

있으며, 반대로 고장이 발생핚 상황에서도 고장의 크기와 잡음에 따라 CF 상황이 발생핛 수 있다. 

산출된 미지 정수 고정해는 정밀핚 상대 벡터 추정치, 즉 상대 벡터 고정해  ̌  산출을 위해 Eq. 

(3)과 같이 홗용된다 (Teunissen 2002). 
 

 ̌   ̂    ̂  ̂   ̂ 
  ( ̂   ̌ )  ( )  
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 와  ̂ 

 는 각각   에 대핚 

사전(a priori) 및 사후(a posteiori) 추정치를 나타낸다.   는 시스템 업데이트 행렬을 나타내며, 
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(5)

여기서 xk=[bk
T ak

T]T는 칼만 필터의 상태변수(State)를 나타낸다.  x^ k
-

와 x^ k
+는 각각 xk에 대한 사전(a priori) 및 사후(a posteiori) 추정치

를 나타낸다. Fk는 시스템 업데이트 행렬을 나타내며, Hk=[Bk Ak]

는 측정치 업데이트 행렬을 나타낸다. 본 연구에서는 시스템 업
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믹 행렬을 단위 행렬로 가정하였으나, 보다 정교한 모델링을 위
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하여 상대 벡터 다이나믹을 표현할 수 있다. 이러한 확장된 모델

을 적용할 경우, 속도 벡터를 필터에서 함께 추정해야 한다. 특히 

Constant Velocity 모델을 적용하는 경우에는 속도 추정을 위해 

Eq. (1)의 측정치 벡터에 도플러 측정치가 포함되어야 한다. 이후 

유도 과정에 대해서는 필터 추정 변수에 속도 변수가 추가되는 

점과 상대 벡터 다이나믹 행렬이 반영되는 점을 고려하여 본 논

문과 동일한 방법론으로 유도할 수 있다. Eq. (6)에서 나머지 0에 

해당하는 원소는 미지 정수 벡터의 공분산 값으로, 사이클 슬립

이 발생하지 않는 한 변하지 않는 특성을 고려하여 0으로 설정하

였다. Eq. (5)를 Eq. (4)에 대입하고, Fk에 단위 행렬을 대입하여 정

리하면 Eq. (7)와 같이 정리할 수 있다. 
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맊약, 고장이 발생하여 칼맊 필터 추정치에 계속하여 누적되고 있는 상황이라면, 고장에 의해 

사후 추정치  ̂  에 발생하는 편향   ̂ 은 Eq. (7)으로부터 Eq. (8)와 같이 표현될 수 있다. 
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즉, 우변의 첫 번째 항은       시갂까지 누적된 고장의 영향이 현재 추정치에 전파되는 크기를 

나타내며, 두 번째 항은    에 발생핚 고장이 현재의 추정치에 투영되는 크기를 나타낸다. Eq. 

(8)를        의 합으로 나타내면 Eq. (9)와 같이 표현 가능핚다. 
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여기서,  (   )는 시갂    에서 발생핚 고장   의 영향을 시갂    로 전파해주는 행렬로써 Eq. 

(10)와 같이 정의된다. 
 

 (   )  (      ) (          )    (  )  
 
즉, 칼맊 필터에서 계산되는 상대 벡터 실수해와 미지 정수 실수해의 편향은 Eq. (9)를 통해 

계산된다. 
 
2.3 고장에 의한 상대 벡터 고정해의 영향 
 
이번 절에서는 고장에 의해 발생핚 상대 벡터 실수해 및 미지 정수 실수해의 편향이 

최종적으로 상대 벡터 고정해에 미치는 영향에 대해 기술핚다. Teunissen (2002)는 상대 벡터 

고정해와 상대 벡터 실수해의 조건부 확률 밀도 함수가 Eq. (11)과 같은 관계를 가짐을 증명하였다. 
 

  ̌   ̌ (   )    ̂   ̂ (   )  (  )  
 
여기서   ̌   ̌ (   )는 상대 벡터 고정해의 조건부 확률 밀도 함수로,  ̌    인 상황에서  ̌   인 

(7)

만약, 고장이 발생하여 칼만 필터 추정치에 계속하여 누적되

고 있는 상황이라면, 고장에 의해 사후 추정치 x^ k
+에 발생하는 편

향 μx̂k은 Eq. (7)로부터 Eq. (8)과 같이 표현될 수 있다.
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즉, 우변의 첫 번째 항은 k-1th 시간까지 누적된 고장의 영향이 현

재 추정치에 전파되는 크기를 나타내며, 두 번째 항은 kth에 발생

한 고장이 현재의 추정치에 투영되는 크기를 나타낸다. Eq. (8)을 

f1,…,fk의 합으로 나타내면 Eq. (9)와 같이 표현 가능한다.
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여기서   ̌   ̌ (   )는 상대 벡터 고정해의 조건부 확률 밀도 함수로,  ̌    인 상황에서  ̌   인 

(9)
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모델을 적용하는 경우에는 속도 추정을 위해 Eq. (1)의 측정치 벡터에 도플러 측정치가 포함되어야 

핚다. 이후 유도 과정에 대해서는 필터 추정 변수에 속도 변수가 추가되는 점과 상대 벡터 

다이나믹 행렬이 반영되는 점을 고려하여 본 논문과 동일핚 방법롞으로 유도핛 수 있다. Eq. 

(6)에서 나머지 0에 해당하는 원소는 미지 정수 벡터의 공분산 값으로, 사이클 슬립이 발생하지 

않는 핚 변하지 않는 특성을 고려하여 0으로 설정하였다. Eq. (5)를 Eq. (4)에 대입하고,   에 단위 

행렬을 대입하여 정리하면 Eq. (7)와 같이 정리핛 수 있다.  
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사후 추정치  ̂  에 발생하는 편향   ̂ 은 Eq. (7)으로부터 Eq. (8)와 같이 표현될 수 있다. 
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여기서 f b
∨

k |a
∨

k (u|w)는 상대 벡터 고정해의 조건부 확률 밀도 함수

로, a∨k=w  인 상황에서 b
∨

k=u인 확률 밀도를 의미한다. f b^k |âk (u|w)는 

상대 벡터 실수해의 조건부 확률 밀도 함수로, a^ k=w인 상황에서 

b
^

k=u인 확률 밀도를 의미한다. u는 임의의 실수이며, w는 임의의 

정수이다.

Eq. (2)와 같이 상대 벡터 실수해와 미지 정수 실수해는 정규 분

포를 따르기 때문에, 상대 벡터 실수해의 조건부 확률 밀도 함수 

또한 정규 분포 밀도 함수로 정의 된다. 즉, 미지 정수 고정해가 w
인 경우, 상대 벡터 고정해의 평균은 Eq. (12)와 같이 계산된다.
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 인 경우, 상대 벡터 고정해의 평균은 Eq. (12)와 같이 계산된다. 
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여기서,  ( )는 평균 연산자(Expectation Operator)이다. 첫 번째 등호는 상대 벡터 고정해에 대핚 

정의 이며, 두번째 등호는 널리 알려짂 정규 분포 조건부 확률 분포 식에 의해 성립핚다. 세번째 

등호는 Eq. (2)로부터 성립핚다. 따라서, 상대 벡터 고정해의 편향   ̌ 는 Eq. (12)로부터 Eq. (13)과 

같이 정리될 수 있다. 
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  (  ̂  (    ))   (  )  

  

3. 보호 수준 산출 방법 
 
본 장에서는 보호 수준 산출 방법에 대해 기술핚다. 3.1절에서는 무결성 위협 확률로부터 보호 

수준 식을 도출하고, 3.2절과 3.3절에서는 도출된 보호 수준 식을 실질적으로 계산하기 위핚 

방법을 기술핚다.  
 
3.1 무결성 위협 확률과 보호 수준 
 
무결성 위협 확률(Probability of Hazardous Misleading Information,  (   ))이란 모니터에 의핚 

경보 없이 추정된 항법해의 오차가 기준이되는 핚계를 넘는 확률을 의미핚다 (Joerger et al. 2014). 

보호 수준(protection level)은 시스템의 무결성 요구조건을 맊족하도록 설정된 기준 핚계로서, 

무결성 위협 확률이 요구되는 무결성 요구조건과 동일하게 되도록 하는 값으로 계산된다. 보호 

수준 산출 시에는 고장 발생 상황에서 모니터링 시스템이 검출하지 못핚 미검출 고장의 영향까지 

모두 고려해야 핚다. 그러나 실제 욲용 홖경에서는 현재 고장의 발생 여부를 확정적으로 알 수 

없으므로, Eq. (14)와 같이 확률롞적 접근법을 통해서맊 이를 고려핛 수 있다 (Joerger et al. 2014).  
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여기서, E(■)는 평균 연산자(Expectation Operator)이다. 첫 번째 
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μ b
∨

k는 Eq. (12)로부터 Eq. (13)과 같이 정리될 수 있다.
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적으로 알 수 없으므로, Eq. (14)와 같이 확률론적 접근법을 통해

서만 이를 고려할 수 있다 (Joerger et al. 2014). 
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Eq. (2)와 같이 상대 벡터 실수해와 미지 정수 실수해는 정규 분포를 따르기 때문에, 상대 벡터 

실수해의 조건부 확률 밀도 함수 또핚 정규 분포 밀도 함수로 정의 된다. 즉, 미지 정수 고정해가 

 인 경우, 상대 벡터 고정해의 평균은 Eq. (12)와 같이 계산된다. 
 

 ( ̌ )       ̌  
  ( ̂ )   ̂  ̂   ̂ 

  (   ( ̂ )) 
 (     ̂ )   ̂  ̂   ̂ 

  (  (     ̂ ))   (  )  
 
여기서,  ( )는 평균 연산자(Expectation Operator)이다. 첫 번째 등호는 상대 벡터 고정해에 대핚 

정의 이며, 두번째 등호는 널리 알려짂 정규 분포 조건부 확률 분포 식에 의해 성립핚다. 세번째 

등호는 Eq. (2)로부터 성립핚다. 따라서, 상대 벡터 고정해의 편향   ̌ 는 Eq. (12)로부터 Eq. (13)과 

같이 정리될 수 있다. 
 

  ̌    ̂    ̂  ̂   ̂ 
  (  ̂  (    ))   (  )  

  

3. 보호 수준 산출 방법 
 
본 장에서는 보호 수준 산출 방법에 대해 기술핚다. 3.1절에서는 무결성 위협 확률로부터 보호 

수준 식을 도출하고, 3.2절과 3.3절에서는 도출된 보호 수준 식을 실질적으로 계산하기 위핚 

방법을 기술핚다.  
 
3.1 무결성 위협 확률과 보호 수준 
 
무결성 위협 확률(Probability of Hazardous Misleading Information,  (   ))이란 모니터에 의핚 

경보 없이 추정된 항법해의 오차가 기준이되는 핚계를 넘는 확률을 의미핚다 (Joerger et al. 2014). 

보호 수준(protection level)은 시스템의 무결성 요구조건을 맊족하도록 설정된 기준 핚계로서, 
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 (   )  ∑ (      )   

 

   
  (  )  

 

(14)

여기서 Hi는 ith 위성에 고장이 발생한 가성 상황을 나타내며, H0

는 고장이 발생하지 않은 정상 상황을 나타낸다. PHi는 고장 가설 
Hi가 발생했을 확률을 나타낸다. 

고장 가설 Hi 하에서 무결성 위협 확률과 보호 수준의 관계는 

HMI 정의 (Joerger et al. 2014)로부터 Eq. (15)와 같이 표현 가능

하다. Eq. (15)에서 상대 벡터 고정해 b
^

k는 벡터이지만, 이하의 전

개에서는 편의상 b
^

k를 상대 벡터 고정해의 원소 중 수직 성분 만

을 나타낸다고 한다. 다른 성분들에 대해서는 수직 성분과 동일

하게 적용 가능한다.
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   상황에서 실제 위치가 보호 수준 내부에 졲재함을         
  의 확률로 보장핚다. 

Eq. (15)로부터    를 계산하기 위해 상대 벡터 고정해의 확률 밀도 함수가 요구된다. 상대 

벡터 고정해의 확률밀도 함수는 미지 정수 고정해의 CF와 IF 여부에 따라 평균값이 달라지며, 

이는 Eq. (13)에서 확인 가능하다. Eq. (15)에 전체 확률의 법칙을 적용하면 Eq. (16)과 같이 CF와 IF 

경우를 확률 적으로 분리하여 나타낼 수 있다. 
 
 (| ̌    |           )   (     )   (| ̌    |           )   (     )          (  )  

 
여기서,       는       

         를 나타내며,   (     )와  (     )는 각각    상황에서 CF와 IF일 

확률을 나타낸다. 고장 가설    상황에서 CF 또는 IF 상황은 고장에 의핚 미지 정수 실수해 편향의 

크기와 잡음에 의해 결정된다. 즉,    상황이더라도 편향의 크기가 작은 경우 CF일 수 있으며, 

편향의 크기가 크더라도 잡음이 고장을 상쇄시켜 CF가 낮은 확률로 발생핛 수 있다. 고장 가설     

상황에서의 CF 및 IF 확률에 대핚 보다 자세핚 내용은 3.3절에 기술하였다. 

Khanafseh et al. (2013)와 같이 IF 상황일 경우 상대 벡터 고정해의 오차가 항상 보호 수준을 

넘는다고 가정하면, Eq. (16)은 Eq. (17)과 같이 정리된다. 
 

 (| ̌    |           )   (     )   (     )         (  )  
 
여기서,       는       

         를 나타낸다.  (     )와  (     )의 합은 항상 1이기 때문에, Eq. 

(17)은 Eq. (18)와 같이 정리될 수 있다.  
 

 (| ̌    |           )  
            (     )

   (     )
 (  )  

 
   상황에서 상대 벡터 고정해는 정규 분포를 따르기 때문에, Eq. (18)에서 보호 수준은 Eq. 

(15)

여기서 항법 필터와 모니터는 서로 독립이라고 가정되었으며,  

PMD는 모니터에서 고장을 검출하지 못할 확률을 의미한다. I*
req,i는 

고장 가설 Hi에 할당된 수직 성분 무결성 요구조건을 의미하며, 

PLi는 고장 가설 Hi에 대한 보호 수준을 의미한다. Eq. (15)로부터 

산출되는 보호 수준은 Hi 상황에서 실제 위치가 보호 수준 내부에 

존재함을 1-I*
req,i의 확률로 보장한다.

Eq. (15)로부터 PLi를 계산하기 위해 상대 벡터 고정해의 확률 

밀도 함수가 요구된다. 상대 벡터 고정해의 확률밀도 함수는 미

지 정수 고정해의 CF와 IF 여부에 따라 평균값이 달라지며, 이는 

Eq. (13)에서 확인 가능하다. Eq. (15)에 전체 확률의 법칙을 적용

하면 Eq. (16)과 같이 CF와 IF 경우를 확률적으로 분리하여 나타

낼 수 있다.
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   상황에서 상대 벡터 고정해는 정규 분포를 따르기 때문에, Eq. (18)에서 보호 수준은 Eq. 

(16)

여기서, Ireq,i는 I*
req,i/PMD/PHi 를 나타내며, P(CF|Hi)와 P(IF|Hi)는 각

각 Hi 상황에서 CF와 IF일 확률을 나타낸다. 고장 가설 Hi 상황에서 

CF 또는 IF 상황은 고장에 의한 미지 정수 실수해 편향의 크기와 

잡음에 의해 결정된다. 즉, Hi 상황이더라도 편향의 크기가 작은 경

우 CF일 수 있으며, 편향의 크기가 크더라도 잡음이 고장을 상쇄

시켜 CF가 낮은 확률로 발생할 수 있다. 고장 가설 Hi  상황에서의 

CF 및 IF 확률에 대한 보다 자세한 내용은 3.3절에 기술하였다.

Khanafseh et al. (2013)와 같이 IF 상황일 경우 상대 벡터 고정

해의 오차가 항상 보호 수준을 넘는다고 가정하면, Eq. (16)은 Eq. 

(17)과 같이 정리된다.
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Eq. (18)에서 보호 수준은 Eq. (19)와 같이 표현될 수 있다.
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(19)과 같이 표현될 수 있다. 
 

      ̌        (
        (     )
   (     )

)    ̌      (  )  

 
여기서   ̌    는 CF 상황에서 상대 벡터 고정해에 발생핚 편향을 의미하며, Eq. (13)에서     인 

상황이다.   ̌    는 상대 벡터 고정해의 표준편차를 의미핚다.    는 표준 정규분포의 

Complementary Cumulative Distribution Function의 역함수를 의미핚다.  

Eq. (19)로부터 상대 벡터 고정해의 보호 수준을 산출하기 위해서  (     )가       보다 

작아야 함을 확인핛 수 있다.  (     )는 미지 정수 실수해의 편향의 크기가 커질수록 커지며, 

미지 정수 실수해의 편향의 크기는 고장의 크기가 클수록 커짂다. 따라서, 미검출 고장의 크기가 

충분히 작지 않은 경우  (     )가       보다 크기 때문에 상대 벡터 고정해의 보호 수준을 산출핛 

수 없으며, 무결성을 보장핛 수 없다. 이러핚 경우 상대 벡터 실수해와 그에 해당하는 보호 수준을 

홗용하여 무결성을 보장핚다. 

Eq. (19)로부터 산출된 보호 수준은    가설 상황에 대응되는 보호 수준이다. 모든 고장 가설 

       에 대응되는 각각의 보호 수준을 산출하고, 그 중 최댓값을 항법 시스템의 최종 보호 

수준으로 홗용함으로써 무결성을 보장핚다. 

Eq. (19)로부터 보호 수준을 계산하기 위해 3.2절과 3.3절에서는 각각   ̌    와  (     )를 

계산하는 방법을 기술핚다. 이때, 최악의 미검출 고장 상황에서도 보호 수준이 위치 오차를 

바욲드핛 수 있도록 보장하기 위해, 바욲딩 기법이 적용되어 산출된다. 
 
3.2 CF 상황 하에서의 상대 벡터 고정해 편향 
 
상대 벡터 고정해 편향   ̌    는 Eq. (13)에서     를 대입함으로써 계산된다. 

 
  ̌       ̂    ̂  ̂   ̂ 

    ̂   (  )  
 

Eq. (9)를 Eq. (20)에 대입하면 상대 벡터 고정해 편향은 Eq. (21)와 같이 표현된다. 
 

  ̌     ∑  (   )      
 

   
  (  )  

 
여기서,   (   )는 [    ̂  ̂   ̂ 

  ]   (   )로 정의된다.     는    상황에서     시갂에 발생핚 

미검출 고장을 의미핚다. 미검출 고장 벡터는 어느 위성에 고장이 발생했는지 나타내는 표시자 

벡터     와 미검출 고장의 크기     의 곱으로 표현될 수 있다. 표시자 벡터는 고장이 발생핚 

위성의 측정치에 해당하는 원소는 1이고, 그 외의 원소는 0이다. 즉,     위성이 고장난 상황을 

(19)

여기서 μ b
∨

k |C F는 CF 상황에서 상대 벡터 고정해에 발생한 편향

을 의미하며, Eq. (13)에서 w =a k인 상황이다. σ b
∨

k |C F는 상대 벡

터 고정해의 표준편차를 의미한다. Ψ-1는 표준 정규분포의 

Complementary Cumulative Distribution Function의 역함수를 

의미한다. 

Eq. (19)로부터 상대 벡터 고정해의 보호 수준을 산출하기 위

해서 P(IF|Hi)가 Ireq,i보다 작아야 함을 확인할 수 있다. P(IF|Hi)는 

미지 정수 실수해의 편향의 크기가 커질수록 커지며, 미지 정수 

실수해의 편향의 크기는 고장의 크기가 클수록 커진다. 따라서, 

미검출 고장의 크기가 충분히 작지 않은 경우 P(IF|Hi)가 Ireq,i보다 

크기 때문에 상대 벡터 고정해의 보호 수준을 산출할 수 없으며, 

무결성을 보장할 수 없다. 이러한 경우 상대 벡터 실수해와 그에 

해당하는 보호 수준을 활용하여 무결성을 보장한다.

Eq. (19)로부터 산출된 보호 수준은 Hi 가설 상황에 대응되는 
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수준을 산출하고, 그 중 최댓값을 항법 시스템의 최종 보호 수준

으로 활용함으로써 무결성을 보장한다.

Eq. (19)로부터 보호 수준을 계산하기 위해 3.2절과 3.3절에서

는 각각 μ b
∨

k |CF와 P(IF|Hi)를 계산하는 방법을 기술한다. 이때, 최악

의 미검출 고장 상황에서도 보호 수준이 위치 오차를 바운드할 

수 있도록 보장하기 위해, 바운딩 기법이 적용되어 산출된다.

3.2 CF 상황 하에서의 상대 벡터 고정해 편향

상대 벡터 고정해 편향 μ b
∨

k |CF는 Eq. (13)에서 w=ak를 대입함으

로써 계산된다.
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Eq. (9)를 Eq. (20)에 대입하면 상대 벡터 고정해 편향은 Eq. (21)와 같이 표현된다. 
 

  ̌     ∑  (   )      
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여기서,   (   )는 [    ̂  ̂   ̂ 

  ]   (   )로 정의된다.     는    상황에서     시갂에 발생핚 

미검출 고장을 의미핚다. 미검출 고장 벡터는 어느 위성에 고장이 발생했는지 나타내는 표시자 
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(20)

Eq. (9)를 Eq. (20)에 대입하면 상대 벡터 고정해 편향은 Eq. 

(21)과 같이 표현된다.
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여기서,   (   )는 [    ̂  ̂   ̂ 

  ]   (   )로 정의된다.     는    상황에서     시갂에 발생핚 

미검출 고장을 의미핚다. 미검출 고장 벡터는 어느 위성에 고장이 발생했는지 나타내는 표시자 

벡터     와 미검출 고장의 크기     의 곱으로 표현될 수 있다. 표시자 벡터는 고장이 발생핚 

위성의 측정치에 해당하는 원소는 1이고, 그 외의 원소는 0이다. 즉,     위성이 고장난 상황을 

(21)

여기서, sb(k,j)는 [I  -Qb^kâkQ
-1
âk]∙S(k,j)로 정의된다. fj,i는 Hi 상황에서 

jth 시간에 발생한 미검출 고장을 의미한다. 미검출 고장 벡터는 

어느 위성에 고장이 발생했는지 나타내는 표시자 벡터 νj,i와 미검

출 고장의 크기 mj,i의 곱으로 표현될 수 있다. 표시자 벡터는 고장

이 발생한 위성의 측정치에 해당하는 원소는 1이고, 그 외의 원소

는 0이다. 즉, ith 위성이 고장난 상황을 의미하는 Hi 고장 가설 상

황 하에서, 표시자 벡터 νj,i는 하나로 특정된다. 반면, 미검출 고장 

크기 mj,i의 경우 그 값을 특정할 수 없다. 하지만, 측정치 도메인 

모니터를 통해 미검출 고장이 가질 수 있는 크기의 최댓값 Mj,i을 

특정할 수 있다. 이 최댓값을 활용하여 상대 벡터 고정해 편향이 

가질 수 있는 최댓값을 Eq. (22)와 같이 계산할 수 있다.
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여기서, 절댓값이 적용된 이유는 미검출 고장의 랜덤핚 방향까지 모두 고려핚 최댓값을 도출하기 

위함이다. 따라서, Eq. (22)에서 산출되는 상대 벡터 고정해 편향은, 미검출 고장에 의해 발생핛 수 

있는 모든 상황 중 최악 조건에서의 편향 크기를 보수적으로 바욲드핚다. 

칼맊 필터에서 과거에 발생핚 고장이 현재 추정치에 미치는 영향은 시갂이 지남에 따라 

점짂적으로 감소핚다. 즉, Eq. (22)에서 현재 시점  을 기준으로 더 오래전에 발생핚 고장일수록 

추정치 편향에 미치는 영향이 작아짂다. 이러핚 특성을 고려하여, 본 연구에서는 계산량을 위해 

필터 시작 시점부터가 아닌, 현재 시점으로부터 100초 이전까지 발생핚 고장의 영향맊을 

고려하였다. 
 
3.3 미지 정수 고정해 IF 확률 
 
미지 정수 고정해가 IF일 확률  (     )은 미지 정수 실수해의 공분산 행렬   ̂ 과 편향 

  ̂ 으로부터 Eq. (23)를 통해 계산된다 (Teunissen et al. 2000). 
 

 (     )    ∏* (
               ̂ 

   ̂   
)  (

             ̂ 
   ̂   

)   +
 

   
 (  )  

 
여기서,    는 Teunissen et al. (1997)에서 제앆핚 Z-변홖 행렬을 의미핚다. Z-변홖 후의 미지 정수 

실수해 공분산 행렬   ̂ 은      ̂   로 계산된다.   은   ̂ 을 LDL 분해했을 때 산출되는 단위 

하삼각행렬을 의미핚다.   ̂   는 대각행렬   의     원소를 나타내며,   는   ̂ 을 LDL 분해했을 때 

산출되는 대각행렬을 의미핚다.   는     원소는 1이고, 나머지 원소는 0의 값을 갖는 벡터를 

의미핚다.   는 표준 정규 분포의 Cumulative Density Function을 나타낸다. 

Eq. (23)를 통해 계산되는 IF 확률은 미지 정수 실수해의 편향의 크기와 방향에 영향을 받는다. 

특히, 편향의 크기가 0일 때, 최솟값을 가짂다. Eq. (23)으로부터 미검출 고장에 의해 발생핛 수 

있는 최악의 IF 확률을 산출하기 위해 Eq. (24)의 변수    를 정의하였다. 
 

      
            ̂   (  )  

 

(22)

여기서, 절댓값이 적용된 이유는 미검출 고장의 랜덤한 방향까지 

모두 고려한 최댓값을 도출하기 위함이다. 따라서, Eq. (22)에서 

산출되는 상대 벡터 고정해 편향은, 미검출 고장에 의해 발생할 

수 있는 모든 상황 중 최악 조건에서의 편향 크기를 보수적으로 

바운드한다.

칼만 필터에서 과거에 발생한 고장이 현재 추정치에 미치는 

영향은 시간이 지남에 따라 점진적으로 감소한다. 즉, Eq. (22)에

서 현재 시점 k을 기준으로 더 오래전에 발생한 고장일수록 추정

치 편향에 미치는 영향이 작아진다. 이러한 특성을 고려하여, 본 

연구에서는 계산량을 위해 필터 시작 시점부터가 아닌, 현재 시

점으로부터 100초 이전까지 발생한 고장의 영향만을 고려하였다.

3.3 미지 정수 고정해 IF 확률

미지 정수 고정해가 IF일 확률 P(IF|Hi)은 미지 정수 실수해의 

공분산 행렬 Q âk과 편향 μ âk으로부터 Eq. (23)을 통해 계산된다 

(Teunissen et al. 2000).
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여기서,    는 Teunissen et al. (1997)에서 제앆핚 Z-변홖 행렬을 의미핚다. Z-변홖 후의 미지 정수 
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하삼각행렬을 의미핚다.   ̂   는 대각행렬   의     원소를 나타내며,   는   ̂ 을 LDL 분해했을 때 

산출되는 대각행렬을 의미핚다.   는     원소는 1이고, 나머지 원소는 0의 값을 갖는 벡터를 

의미핚다.   는 표준 정규 분포의 Cumulative Density Function을 나타낸다. 

Eq. (23)를 통해 계산되는 IF 확률은 미지 정수 실수해의 편향의 크기와 방향에 영향을 받는다. 

특히, 편향의 크기가 0일 때, 최솟값을 가짂다. Eq. (23)으로부터 미검출 고장에 의해 발생핛 수 

있는 최악의 IF 확률을 산출하기 위해 Eq. (24)의 변수    를 정의하였다. 
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여기서, Z k
T는 Teunissen et al. (1997)에서 제안한 Z-변환 행렬을 

의미한다. Z-변환 후의 미지 정수 실수해 공분산 행렬 Q ẑk은 Z k
T 

Q âkZ k로 계산된다. L k은 Q ẑk을 LDL 분해했을 때 산출되는 단위 
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값을 가진다. Eq. (23)으로부터 미검출 고장에 의해 발생할 수 있

는 최악의 IF 확률을 산출하기 위해 Eq. (24)의 변수 μ ξk
를 정의하

였다.
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의 ith 원소는 Eq. (23)의 cjLk
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T μâk/σẑj|J

와 동일하다. Eq. (9)

를 Eq. (24)에 대입하여 정리하면 Eq. (25)와 같이 μ ξk
를 미검출 고

장 fj에 대한 함수로 표현할 수 있다.
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최악의    를 Eq. (26)과 같이 계산핛 수 있다. 
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Eq. (26)으로부터 계산된    의 각 원소를 (23)에 대입하여 산출된 IF 확률은, 미검출 고장에 의해 

발생핛 수 있는 모든 IF 시나리오 중 최악 조건에서의 IF 확률을 보수적으로 바욲드하는 값으로 

사용될 수 있다. 또핚, 계산량을 고려하여 Eq. (22)에서와 마찪가지로 현재 시점으로부터 100초 

이전까지 발생핚 고장의 영향맊을 고려하였다.  
 

4. 시뮬레이션 기반 성능 분석 
 
4.1 시뮬레이션 파라미터 
 
본 연구에서 제앆하는 보호 수준의 성능 평가를 위해 시뮬레이션 기반 성능 분석을 수행핚다. 

대전 지역에서 이중 주파수/이중 위성굮 측정치를 사용하는 두 대의 무인 이동체를 가정하였다. 

코드 측정치 다중경로 오차는 1차 가우스 마코프 모델로 모델링되었으며, 시갂 상수는 30초로 

설정하였다. 표준 편차의 경우 고도각 90°에서 수싞되는 싞호에 대하여 1 m로 가정하였으며, 

고도각에 따른 값은 Table 1의 식을 따른다. 반송파 측정치 또핚 1차 가우스 마코프 모델로 

모델링되었으며, 시갂 상수는 30초, 고도각 90°에 대하여 2 cm의 표준 편차를 적용하였다. 코드와 

반송파 측정치의 다중경로 오차는 Khanafseh et al. (2018)의 분석 결과를 참고하여 결정하였다. 

전리층 잒류 오차는 4 mm/km (Lee et al. 2007)로 가정하였다. 

성능 분석은 위성 궤도력 고장 상황을 고려하여 수행되었다. 위성 궤도력 고장은 위성에서 

방송하는 항법 메시지에 오류가 발생하여 항법 메시지로부터 산출된 위성 위치와 실제 위성 위치 

갂에 큰 차이가 발생하는 상황을 의미핚다. 이때 위성 위치 오차로 인핚 GNSS 측정치 편향의 

크기는 위성 위치 차이를 두 무인이동체 갂 상대 벡터에 투영핚 값으로 결정된다. 본 연구에서는 

(25)

여기서 s a(k ,j)는 D k
-1L k

-1Z k
TES(k ,j)로 정의되며, E는 [μT

b^k μT
âk]

T로부

터 μâk을 분리해내는 행렬이다. 3.1절과 유사한 방식으로, 표시자 

벡터 ν j ,i와 미검출 고장의 최대 크기 M j,i를 활용하여 최악의 μ ξk

를 Eq. (26)과 같이 계산할 수 있다.
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발생핛 수 있는 모든 IF 시나리오 중 최악 조건에서의 IF 확률을 보수적으로 바욲드하는 값으로 

사용될 수 있다. 또핚, 계산량을 고려하여 Eq. (22)에서와 마찪가지로 현재 시점으로부터 100초 

이전까지 발생핚 고장의 영향맊을 고려하였다.  
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모델링되었으며, 시갂 상수는 30초, 고도각 90°에 대하여 2 cm의 표준 편차를 적용하였다. 코드와 
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전리층 잒류 오차는 4 mm/km (Lee et al. 2007)로 가정하였다. 

성능 분석은 위성 궤도력 고장 상황을 고려하여 수행되었다. 위성 궤도력 고장은 위성에서 

방송하는 항법 메시지에 오류가 발생하여 항법 메시지로부터 산출된 위성 위치와 실제 위성 위치 
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(26)

Eq. (26)으로부터 계산된 μ ξk
의 각 원소를 Eq. (23)에 대입하여 

산출된 IF 확률은, 미검출 고장에 의해 발생할 수 있는 모든 IF 시

나리오 중 최악 조건에서의 IF 확률을 보수적으로 바운드하는 값
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으로 사용될 수 있다. 또한, 계산량을 고려하여 Eq. (22)에서와 마

찬가지로 현재 시점으로부터 100초 이전까지 발생한 고장의 영

향만을 고려하였다. 

4. 시뮬레이션 기반 성능 분석

4.1 시뮬레이션 파라미터

본 연구에서 제안하는 보호 수준의 성능 평가를 위해 시뮬레

이션 기반 성능 분석을 수행한다. 대전 지역에서 이중 주파수/이

중 위성군 측정치를 사용하는 두 대의 무인 이동체를 가정하였

다. 코드 측정치 다중경로 오차는 1차 가우스 마코프 모델로 모델

링되었으며, 시간 상수는 30초로 설정하였다. 표준 편차의 경우 

고도각 90°에서 수신되는 신호에 대하여 1 m로 가정하였으며, 고

도각에 따른 값은 Table 1의 식을 따른다. 반송파 측정치 또한 1차 

가우스 마코프 모델로 모델링되었으며, 시간 상수는 30초, 고도

각 90°에 대하여 2 cm의 표준 편차를 적용하였다. 코드와 반송파 

측정치의 다중경로 오차는 Khanafseh et al. (2018)의 분석 결과

를 참고하여 결정하였다. 전리층 잔류 오차는 4 mm/km (Lee et 

al. 2007)로 가정하였다.

성능 분석은 위성 궤도력 고장 상황을 고려하여 수행되었다. 

위성 궤도력 고장은 위성에서 방송하는 항법 메시지에 오류가 

발생하여 항법 메시지로부터 산출된 위성 위치와 실제 위성 위

치 간에 큰 차이가 발생하는 상황을 의미한다. 이때 위성 위치 오

차로 인한 GNSS 측정치 편향의 크기는 위성 위치 차이를 두 무

인이동체 간 상대 벡터에 투영한 값으로 결정된다. 본 연구에서

는 무인이동체가 위성 궤도력 고장 검출을 위해 Orbit-fit 모니터 

(Lee et al. 2006)를 탑재하고 있다고 가정하였으며, 미검출 고장

의 크기는 Lee et al. (2006)의 분석 결과를 활용하였다. 수직 방

향 무결성 위협 확률 요구조건은 10-7, 모니터의 연속성 위협 확률 

요구조건은 10-5로 가정하였다. 무결성 위협 확률 요구조건은 모

든 위성에 동일하게 분배되었다. 위성 궤도력 고장이 발생할 확

률은 10-5로 가정하였다.

4.2 보호 수준 산출 결과

Fig. 1은 두 무인이동체 간 거리가 10 m인 상황에서 보호 수준

을 산출한 결과이다. 검은색 실선은 Orbit-fit 모니터를 사용하

는 상황에서 본 논문에서 제안한 방법을 활용하여 산출한 보호 

수준이며, 회색 점선은 Min et al. (2025)에서 제안한 위치 도메

인 모니터를 활용하는 SS 기반 Receiver Autonomous Integrity 

Monitoring (RAIM) 기법을 적용한 결과이다. 그래프 내부의 작은 

그래프는 200 ~ 1000초 구간을 확대한 것이다. 시뮬레이션 결과

에서 두 방법 모두 약 300초 부근에서 보호 수준이 급격히 감소

Table 1.  Simulation parameters.

Parameters Values
Navigation 
requirements

Integrity risk in vertical direction (Ireq,v)
Continuity risk under fault-free (Creq,0,v)

10-7

10-5

Faults
A priori probability of a satellite measurement fault (PHi≠0) 10-5

The number of maximum simultaneous faults Single

Environments
Location
Constellation

Daejeon, South Korea
GPS 24 / Galileo 27

Frequency L1/L5 for GPS, E1/E5a for Galileo

Measurement 
error models

Code multipath error σ:  1+3.09·exp
9.12

-
x( )m, τ: 30 s

Carrier multipath error σ:  2+6.18·exp
9.12

-
x( )cm, τ: 30 s

Ionospheric decorrelation error 4 mm/km

Fig. 1.  Vertical Protection Level (PL) comparison between the proposed 
method (black solid line with circle markers) and the SS-RAIM method (gray 
dashed line with diamond markers) for a baseline distance of 10 m.

Fig. 2.  Vertical Protection Level (PL) comparison between the proposed 
method (black solid line with circle markers) and the SS-RAIM method (gray 
dashed line with diamond markers) for a baseline distance of 200 m.
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하는 것을 확인할 수 있다. 이는 300초 이전까지는 상대 벡터 실

수해가 활용되다가, 300초 이후부터 상대 벡터 고정해가 사용되

기 때문이다. 제안하는 방법에서는 3.3절에서 기술한 바와 같이, 

미지 정수 고정해 IF 확률이 무결성 위협 확률 요구조건보다 작

은 경우에 고정해를 사용하였다. 필터가 수렴함에 따라 미지 정

수 실수해의 추정 정확도가 향상되어 P(IF |Hi)가 점차 작아지며, 

300초 이후, 즉 Ireq.보다 작아지는 시점 부터 상대 벡터 고정해 사

용이 가능해졌다. SS-RAIM 기반 방법 또한 필터 수렴에 따라 상

대 벡터 고정해 사용이 가능해졌다. 보호 수준 크기를 비교해 보

면, 상대 벡터 실수해가 사용되는 구간에서는 SS-RAIM 기반 방

법 대비 제안하는 방법이 평균 36% 감소하였으며, 고정해가 사용

되는 구간에서는 46% 감소하였다. 계산량 측면에서도 SS-RAIM 

기법은 병렬 필터를 구동해야 하기 때문에, 본 연구에서 제안하

는 방법 대비 평균 5배 이상의 연산량이 소요되었다.

Fig. 2는 두 무인이동체 간 거리가 200 m인 경우에 대한 시뮬

레이션 결과이다. 결과에서 확인할 수 있듯이, 본 연구에서 제안

한 방법을 사용한 경우 상대 벡터 고정해 보호 수준이 크게 증가

한 반면, SS-RAIM 기법의 경우 보호 수준에 큰 변화가 없었다. 

이러한 차이는 두 모니터링 기법의 근본적인 동작 원리 차이에서 

기인한다. Orbit-fit 모니터는 검정 통계량을 위성 위치 도메인에

서 정의하고 모니터 임계값과 비교하여 고장을 검출한다. 따라서 

미검출 고장의 크기는 위성 위치 도메인에서 정의되며, 이를 측

정치 도메인으로 변환하여 보호 수준을 산출한다. 변환 과정에서 

동일한 위성 위치 도메인 미검출 고장이라도 두 무인이동체 간 

거리가 증가함에 따라 측정치 도메인에서의 미검출 고장 크기가 

비례적으로 증가한다. 반면, SS-RAIM은 측정치로부터 계산된 사

용자 위치를 활용하여 고장을 검출한다. 즉, 위치 도메인에 발생

하는 고장에 의한 편향을 직접 모니터링하기 때문에 두 무인이동

체 간 거리에 의한 영향이 이미 모니터에 반영되어 있어, 거리가 

증가하더라도 미검출 고장의 크기는 변화하지 않는다. 이러한 특

성 차이로 인해 제안하는 방법의 경우 고정해 보호 수준이 약 4.6

배 가량 증가하였지만 SS-RAIM 기반 기법은 거의 변하지 않았

다. 상대 벡터 실수해 보호 수준의 경우 큰 변화를 보이지 않았는

데, 이는 미검출 고장 크기 증가로 인한 상대 벡터 실수해 편향 증

가분보다 잡음에 의한 보호 수준의 영향이 더 크기 때문이다. 따

라서 고정해의 경우 제안한 기법의 보호 수준이 SS-RAIM 기법

보다 더 크게 산출되었지만, 실수해의 경우 제안하는 방법의 보

호 수준이 더 작게 나타났다. 계산량 측면에서는 제안한 방법이 

SS-RAIM 기법에 비해 더 적은 연산 자원을 요구한다.

Fig. 3은 제안하는 방법을 적용하였을 때 두 무인이동체 간 거

리 변화에 따른 보호 수준의 변화를 보여준다. 두 무인이동체 간 

거리가 증가함에 따라 미검출 고장의 크기가 점진적으로 증가하

며, 이에 따라 보호 수준의 크기도 점진적으로 증가하는 경향을 

확인할 수 있다. 두 무인이동체 간 거리가 400 m 이상인 경우, 약 

110초 부근에서 보호 수준이 증가하는 것을 확인할 수 있다. 이는 

누적되는 미검출 고장에 의한 위치 오차를 바운드하기 위함이다. 

두 무인이동체 간 거리가 600 m 이하인 경우, Figs. 1과 2의 결과

와 같이 보호 수준이 계단식으로 감소하는 구간을 확인할 수 있

다. 이는 실수해가 사용되다가 고정해가 사용되었기 때문이다. 

다만, 두 무인이동체 간 거리가 증가함에 따라 고정해가 사용되

는 시점이 다소 늦어지는 것을 확인할 수 있는데, 이는 미검출 고

장에 의한 미지 정수 실수해 편향의 크기가 증가하여 P (IF |Hi)

가 Ireq.보다 작아지기까지 더 긴 필터링 시간이 요구되었기 때문

이다. 두 무인이동체 간 거리가 600 m를 넘어서는 시점부터는 

보호 수준이 계단식으로 급감하는 시점을 찾을 수 없다. 이는 미

지 정수 실수해 편향의 크기가 너무 커져서 충분한 필터링 시간

을 가져도 Ireq.보다 작은 P(IF |Hi)를 달성할 수 없어 상대 벡터 고

정해를 사용할 수 없었기 때문이다. 본 연구에서 도출된 상대 벡

터 고정해 사용 불가능 시점인 600 m는 해당 시뮬레이션 환경에

서 국한된 결과이다. 즉, Orbit-fit 위성 궤도력 모니터를 사용하

며 Table 1에 정의된 상황에서 도출된 결과로, 다른 고장 모니터

를 활용하거나 다른 성능의 수신기를 사용하는 경우에는 상대 벡

터 고정해 사용 불가능 시점이 달라질 수 있다.

5. 결론

CDGNSS 시스템은 반송파 측정치를 활용하는 정밀 상대항법 

기술로, 공중 급유와 같이 근거리 군집 임무를 수행하는 응용 분

야에 적합하다. 이러한 군집 임무의 안전한 수행을 위해서는 항

법 시스템의 무결성 보장이 필수적이다. 본 연구에서는 측정치 

도메인 모니터를 활용하는 무결성 보장 CDGNSS 시스템에서의 

보호수준 산출 방법을 제안하였다. 무결성 위협 확률의 정의로부

터 상대 벡터 고정해에 대한 보호 수준 산출식을 유도하였으며, 

이는 미검출 고장으로 인한 고정해의 편향과 미지 정수의 IF 확률

에 의해 결정된다. 이를 위해 미검출 고장이 칼만 필터의 재귀 과

정을 통해 상대 벡터 실수해와 미지 정수 실수해에 누적되는 영

향을 정량화하고, 해당 영향을 기반으로 고정해 편향과 IF 확률을 

산출하였다. 제안된 PL은 최악의 고장 시나리오에서도 실제 오차

를 보수적으로 바운드하도록 설계되었다. Orbit-fit 기반 위성 궤

도력 고장 모니터를 가정한 시뮬레이션을 수행하였고, 두 무인이

동체 간 거리가 수십 미터 이내인 경우 제안 기법이 SS-RAIM 기

반 방법보다 더 작은 보호 수준을 제공하며 더 낮은 연산량을 요

구하는 것을 확인하였다. 반면, 두 무인이동체 간 거리 증가에 따

Fig. 3.  Vertical Protection Level (PL) comparison with respect to baseline 
distances.
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라 미검출 고장 크기가 커지고, 보호 수준이 점진적으로 증가하

는 경향을 보였다. 이러한 결과는 제안된 기법이 근거리 군집 운

용 환경에서 특히 적합함을 시사한다. 향후 연구에서는 3대 이상

의 무인이동체가 구성하는 상대 항법 네트워크를 활용하여, 기하

학적 이점을 통해 장거리 기준선에서도 향상된 보호수준 성능을 

확보하는 기법을 개발하고자 한다. 
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