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ABSTRACT

This paper presents a Lie Group Extended Kalman Filter (LGEKF) for attitude estimation, formulated directly on the special
orthogonal group SO(3), to preserve the geometric properties of 3D rotations. Unlike conventional methods that suffer
from singularities or normalization issues, our approach leverages an exponential map to propagate rotations and fuses the
Magnetometer, Accelerometer, Rate Gyroscope (MARG) sensor data while respecting the manifold structure of the SO(3).
Using a dynamically challenging helical trajectory with realistic sensor noise and biases, we demonstrate that the LGEKF
significantly outperforms the standard Extended Kalman Filter (EKF), reducing Root Mean Square (RMS) errors by 26.7% in
yaw (0.44° vs. 0.60°), 99.48% in pitch (0.007° vs. 1.34°), and 99.84% in roll (0.008° vs. 5.15°). The covariance propagation of the
filter remained stable even during aggressive maneuvers, reflecting its robustness in highly dynamic scenarios. The simulation
results highlight the superiority of the LGEKF in drift mitigation and estimation efficiency, making it ideal for real-time
applications in autonomous navigation vehicles in underwater environments and other Global Positioning System (GPS)-

denied environments.
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1. INTRODUCTION

Accurate attitude estimation is a cornerstone of navigation
and control in autonomous vehicles, spanning a diverse array of
platforms, such as aerial drones (Sabet et al. 2018), underwater
vehicles (Kim et al. 2011), and spacecraft (Zhu et al. 2024). As
these systems increasingly operate in complex environments
that are often devoid of reliable Global Positioning System
(GPS) signals, the need for robust and drift-resistant estimation
techniques has become critical (Alghamdi et al. 2025). These
techniques ensure operational integrity and enhance the safety
and reliability of autonomous systems during high-stakes
missions.

Traditional methods for representing orientation, such
as Euler angles, are plagued with limitations, including
singularities such as gimbal locks, which can abruptly hinder
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navigation capabilities (Jwo 2021). In contrast, quaternion-
based approaches offer a solution by avoiding these
singularities; however, they introduce complications, such
as the necessity for normalization and ambiguities in sign
representation (Zhang et al. 2018). Such challenges highlight
the need for alternative methods that are geometrically
consistent and mathematically rigorous (Shi & Chen 2024).
One promising avenue lies in the utilization of the Lie group
theory, particularly through the Special Orthogonal Group
SO(3), which mathematically represents 3D rotation matrices
(D'Eleuterio & Barfoot 2022). This framework not only maintains
the essential properties of rotations, such as orthonormality and
determinant constraints (Sol'a et al. 2018), but also eliminates
the need for ad-hoc normalization typical of quaternion-based
filters. The ability to handle rotations without singularities makes
SO(3) particularly advantageous in highly dynamic scenarios,
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where linear approximations often fail to encapsulate the
nonlinear characteristics of rotational motion (Qin 2024).

As technology advances, the proliferation of low-cost
Magnetometer, Accelerometer, and Rate Gyroscope (MARG)
sensors such as MEMS-based Inertial Measurement Units
(IMU ) has intensified the demand for robust attitude estimation
algorithms (Hyyti & Visala 2015). These sensors, which combine
accelerometers, gyroscopes, and magnetometers, provide a
wealth of data that, when accurately processed, can significantly
enhance navigation capabilities (Chu et al. 2017). Although
Kalman filters remain the widely accepted gold standard
for state estimation, their application to Lie groups requires
meticulous attention to the state propagation and measurement
models to maintain accuracy and reliability (Liu et al. 2023).

Prior research has explored various approaches, including
invariant extended Kalman filters (IEKFs) (Chauchat et al. 2017)
and unscented filters (Daid et al. 2020), specifically designed for
implementation in SO(3). The proposed Lie Group Extended
Kalman Filter (LGEKF) aims to bridge this gap by combining
geometric invariance with enhanced nonlinear estimation fidelity.

Our study aims to present a comprehensive framework that
enhances the robustness and accuracy of attitude estimation
techniques.

1) Formulating the attitude estimation problem in Lie

group, in the framework of Extended Kalman filter.

2) Explicit derivation of Jacobian matrices of the process
model and measurement model.

3) The filter’s performance is validated with noisy
synthetic datasets, achieving sub-degree Root Mean
Square (RMS) errors in yaw, pitch, and roll).

4) Deriving a process model for SO(3) that directly integrates
gyroscopic rates via the exponential map, avoiding
linearization errors.

5) Proposing a measurement model that fuses synthetic
accelerometer and magnetometer data while respecting
the group’s geometry.

1.1 Related Work

Lie group-based estimation has gained traction with the
development of the invariant observer theory, which exploits
symmetries in dynamical systems. For attitude estimation,
the SO(3) formulations outperformed quaternions by
preserving orthonormality and avoiding renormalization.
Recent studies have shown that probabilistic filters on SO(3)
handle uncertainty propagation more naturally, a feature that
we leverage in our Kalman filter design (Aslam et al. 2025).

MARG sensor fusion has been extensively studied with
lightweight solutions such as Madgwick’s gradient-descent
filter and Mahony’s complementary filter (Hoang et al.
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2021). However, these methods often lack robust uncertainty
quantification provided by Kalman filters. Our approach
combines the geometric fidelity of SO(3) with the optimality of
Kalman filtering, effectively addressing the limitations of both
domains. A recent study (Ko et al. 2022) further demonstrated
the effectiveness of the Lie group approach in dynamic-model-
aided navigation for multirotor UAVSs, whereas (Jeong & Ko
2024) extended this framework to underwater vehicle navigation
by compensating for sensor misalignment using the Lie theory.

Recent advances in state estimation of manifolds have
demonstrated that utilizing the underlying Lie group structure
of SO(3) leads to more stable and accurate filtering methods.
The IEKF exploits system symmetries through invariant error
formulations to achieve theoretically appealing properties such
as state-independent Jacobians and improved consistency
guarantees, and enhances stability and convergence by not
relying on the direct linearization of nonlinear processes and
measurement models (Ko et al. 2018). This approach has
demonstrated superior performance compared with standard
Extended Kalman Filters (EKFs) in various applications,
particularly in visual-inertial odometry and robotic navigation,
where the symmetry properties are pronounced (Barrau
& Bonnabel 2014). Another emerging trend is the direct
use of probabilistic filtering on Lie groups, which improves
robustness under sensor drift and noise features that align
closely with the demands of navigation in unstructured
environments (Guo et al. 2023).

The widespread adoption of low-cost MARG sensors has
created opportunities for robust attitude estimation with
reduced costs and sizes (Wu et al. 2016). Although classical
filtering methods offer lightweight solutions, they often struggle
in environments with sensor degradation or aggressive motion.

The present work contributes to this landscape by proposing
an LGEKEF that adopts a philosophical approach different from
the IEKF methodology. While the IEKF emphasizes theoretical
invariance through group symmetries, our LGEKF focuses on
geometric consistency through an explicit treatment of the SO(3)
manifold structure. Our approach strikes a balance among
geometric fidelity, estimation efficiency, and robustness, making
itideal for embedded systems and real-time applications.

1.2 Technical Challenges and Contributions

« Gyroscopic measurements induce nonlinear state transitions
in the SO(3). Prior linearized filters such as EKFs can diverge
during rapid maneuvers. Our process model employs an
exponential map to accurately propagate rotations.

o Accelerometer and magnetometer measurements must
be projected onto SO(3) without distorting the manifold.
We normalized the data and enforced orthonormality
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Table 1. Symbols used in this paper.

Symbol Description
R(k) Rotation matrix from body frame to inertial (NED) frame at time k; R(k) €SO(3)
w(k) Angular velocity vector € R’, measured by gyroscope, expressed as [p(k),q(k),r(k)]"
p(k), q(k), r(k)  Roll, pitch, and yaw rates respectively at time k, measured in rad/s from the gyroscope
G Known gravity vector in the NED frame, typically [0,0,1]"
m, Known, normalized magnetic field vector in the NED frame
a,(k) Accelerometer output in the body frame at time k
m,(k) Magnetometer output in the body frame at time k
a,(k) Normalized accelerometer vector
my(k) Normalized magnetometer vector
z(k) Measurement vector, stacking both normalized sensor readings: z(k) €R°®
At Sampling interval or time step
L Skew-symmetric matrix operator for cross-product in SO(3)
f?(k|k) Estimation of attitude represented in SO(3)
F(k) Jacobian of the process model with respect to the rotation state R(k).
H(k) Jacobian of the measurement model with respect to the rotation state R(k).
Q(k) Process noise covariance matrix
V(k) Measurement noise covariance matrix
P(k) Covariance matrix of the attitude estimation error
K(k) Kalman gain matrix
e(k) Innovation (residual) vector in the measurement update step
exp(-) Exponential map
T Tangent-space perturbation induced by the gyroscope noise.

b,(1), b(1), b,(t) Time-varying biases for gyroscope, accelerometer, and magnetometer, respectively.
(1), 1.(8), n,,(t) Gaussian noise terms for gyroscope, accelerometer, and magnetometer, respectively.
a(t), 0,(1), 0,,(t) Standard deviations of sensor noise for gyroscope, accelerometer, and magnetometer, respectively.

constraints to maintain the integrity of the geometric
framework.

1.3 Article Organization

The remainder of this paper is organized as follows. The
methodology and outline of the main topic are presented
in Section II. Section III presents and discusses our
results. Finally, Section IV provides the conclusions and
recommendations for future research.

2. PROCESS AND MEASUREMENT
MODELS ON SO(3)

In this section, the process and measurement models
used in the LGEKF for attitude estimation are defined. The
formulation is grounded in the Special Orthogonal Group
SO(3), which accurately represents the 3D rotational motion
without singularities or overparameterization. The sensor
inputs included triaxial angular velocity, linear acceleration,
and magnetic field measurements from the MARG sensor
unit.

2.1 Problem Formulation

In this section, the problem statement of the research is

outlined, and the mathematical symbols used throughout
the study are detailed in Table 1.

Cmenswmen
Objective: To estimate the 3D orientation (attitude) of a rigid body over
time using MARG sensor data.
Given:
(i) Angular velocity from gyroscope,
(ii) Specific force from accelerometer,
(iif) Magnetic field from magnetometer.
Reference Frame: The inertial frame is defined as NED.
Approach: Employ a LGEKF formulated on SO(3) to recursively estimate
the attitude
represented by rotation matrix R(k).
\Output: IAR(k|k), an estimate of the orientation of the body at each time step k./

2.2 State Representation on SO(3)

The state variable in our model is the rotation matrix
R(k) € SO(3) which maps vectors from the body-fixed frame
to the inertial (world) frame. SO(3) group is defined as

SO(3)=1{R € R™|R'R =1, det(R) = +1}. 1)
This matrix describes the orientation of the body frame
with respect to the fixed reference frame. The reference

frame in the proposed system is the NED frame. Accordingly,
gravity is represented by

gn=[0 0 1]" ()

http://www.ipnt.or.kr
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This implies that gravity acts downward along the
positive z axis in the NED frame. The Earth's magnetic field
is denoted by m,€R®, a known, normalized vector in the
NED frame obtained from geomagnetic models.

2.3 Process Model

Attitude dynamics are driven by the angular velocity
vector measured in the body frame.

p(k) (3)
w(k) = [q(k)|.
r(k)

The continuous-time rotational motion is discretized
using the exponential map from the Lie algebra SO(3),
leading to a discrete-time attitude update:

R(k 4+ 1) = R(k) exp(lw (k)] Ab). (4)

Process Noise Incorporation: The process noise enters
through gyroscopic measurements during state propagation.
Considering the noisy angular velocity measurement
a(k)=w(k)+w, k) where w,(k)~N(0,Q,) is zero-mean Gaussian
noise, the discrete-time process model accounts for
uncertainty as shown in Eq. (4). The process noise covariance
Q(k) in the filter represents the linearized effect of w, (k) on
the state in the tangent space of SO(3).

The skew-symmetric matrix|w(k)] « is given by:

0 -rk) ql)
lw()]x = | r(k) 0 —pl)|. (5)
—q(k)  p(k) 0

This matrix encodes the cross-product operation, and
when used in the exponential map (Eq. (4)) ensures that the
updated rotation R(k+1) remains on SO(3), preserving the
orthonormality and avoiding drift.

2.4 Measurement Model

The measurement model fuses normalized accelerometer
and magnetometer data to estimate the vehicle orientation.
These sensor readings were expressed in the body frame
and mapped to known reference vectors in the inertial
(navigation) frame.

2.4.1 Normalization of sensor measurement data

At each time step, the raw accelerometer and magnetometer
outputs are:
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ay (k) my (k)
a, (k) = |ay (k) [, my, (k) = |my, (k) |. (6)
a,(k) m, (k)

Normalized accelerometer (a, (k)) and magnetometer (m,
(k)) measurements are:

a, (k) my, (k)

B = Ta, G ™ = Ton, T ®

The full measurement vector is:
_ ab(k) 6 8
2(k) = [ﬁlb(k) € RS. ®8)

2.4.2 Measurement equation

The normalized inertial vectors are projected to the body
frame:

_pT
20 = 7 Ug’)‘r)ril"]ezeé. 9)

2.5 Linearization and Jacobians

The LGKEF requires linearizing nonlinear models around
the current estimate. The perturbations are expressed in
the tangent space SO(3). Unlike the IEKF, which exploits
symmetry to achieve state-independent Jacobians, our
approach derives explicit state-dependent Jacobians
through a perturbation analysis, providing mathematical
transparency while maintaining geometric consistency.

2.5.1 Process model Jacobian

The state-transition Jacobian reuses Eq. (4)’s Exponential
map. Its Jacobian with respect to R(k) is

OR(k + 1)

F(k+1) =76R(k)

= {exp(lw(i) . A0)}".  (10)

This ensures the rotation matrix R(k+1) remains properly
constrained on SO(3).

2.5.2 Measurement model Jacobian

Using the identity in Eq. (9), the Jacobian becomes:

A(RTv)
R

= RT|v|«R. (11)
Consequently, the Jacobian can be represented as:

—RTKIOLgnRKIO] _ poxs (12)

U = | RT (ki) R (K1)
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2.6 Lie Group Extended Kalman Filter Formulation

The LGEKF operates through the following prediction
and correction steps:

Prediction:
R(k + 11k) = R(k|k) exp(lw(k)|<At) (13)
Pk + 1|k) = F(k)P(k|k)FT (k) + Q(k) (14)
Correction:

K(k+1)=Pk+1|k)HT(k + 1)
[Hk + Pk + 1|K)HT(k+ 1) +V]™t  (15)

Innovation:

e(k+1) =z(k+1) —h(R(k + 1]k)) (16)

State Update:
Rk + 1|k +1) = R(k + 1]k) exp(IK(k + De(k + D],) (17)

Covariance Update:

P(k + 1|k + 1)
=(-K(k+1DHMk+1)P(k+1)
(I - K+ DHKk + 1))
+ K(k + 1DRK(k + 1) (18)

This formulation ensures that attitude estimation remains
consistent with the geometry of SO(3), enabling robust and
accurate performance even in highly dynamic environments.

2.7 Estimation Error Definition on SO(3)

A critical aspect of applying a Kalman filter to a manifold
is the proper definition of the estimation error. Following
the Lie theory framework (Sol'a et al. 2018), we define a
right-invariant error that measures the discrepancy of the
estimate from the truth. The right-invariant estimation error
is defined by using the following convention:

80(k) = R(k|k) © Ryo(K) = log{R,.(k)"R(K|K)}, (19)

true

where 80(k) € R’ represents the error vector in the Lie algebra
SO(3). The error covariance matrix P(k) is then defined as

P(k) = E[8(k) 86" (k)]. (20)

The process noise covariance Q(k) represents the
covariance of the gyroscope noise vector w,(k). The gyroscope
noise enters the rotation propagation through the exponential
map, producing a perturbation 7 in the Lie algebra tangent
space. Therefore, the process noise covariance in the Lie

algebra is

QU = E[r 7], (21)

where T €R’ represents the tangent-space perturbation
induced by the gyroscope noise.

3. SIMULATION RESULTS AND DISCUSSION

This section presents a thorough validation of the
proposed LGEKF through comprehensive simulations with
emphasis on attitude estimation accuracy. To establish
a robust benchmark, we compared the LGEKF with the
conventional EKF, which is a widely recognized and
extensively utilized baseline in nonlinear state estimation.

The EKF operates as a conventional filter for attitude
estimation and lacks sophisticated techniques integrated
within the LGEKF. Our analysis focuses on the precision of
the attitude estimation results, highlighting the advantages
of the proposed method. The results illustrated in the
accompanying figures demonstrate the comparative
performance of both methods across various scenarios.

3.1 Simulation Setup

To rigorously evaluate the performance of the proposed
LGEKF against that of the conventional EKF, we generated
synthetic sensor data based on a helical trajectory (Fig. 1),
which is a dynamic motion profile that combines continuous
rotation and translation. The corresponding sensor
measurements, including the gyroscope, accelerometer, and
magnetometer data, were corrupted with realistic MEMS
noise and biases to emulate low-cost MARG sensor behavior
under demanding motion conditions. This trajectory
challenges filters with time-varying angular velocities and
accelerations, mimicking real-world scenarios, such as
autonomous underwater vehicle (AUV) maneuvers.

3.1.1 Synthetic trajectory generation

The true attitude motion follows a 3D helical path defined
by:

« Angular velocity w(t): Time-varying, with sinusoidal
components in the body frame to simulate agile
rotations.

 Position and acceleration: Attitude dynamics were
coupled to ensure physically consistent accelerometer
measurements.

3.1.2 Sensor models

http://www.ipnt.or.kr
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Fig. 1. Synthetically generated trajectory and sensor data.

The synthetic measurements for the gyroscope and
accelerometer were modeled with realistic noise and bias
characteristics, emulating the low-cost MEMS sensors
commonly used in practical applications.

1) Gyroscope model:
The measured angular velocity @(t) is corrupted by time-
varying bias b, () and Gaussian noise 7, (£):

@(t) = w(t) + by(t) +n4(t), (22)

where w(f) is true angular velocity (in rad/s), b,(t) is bias
modeled as a random walk process given by b,(t) = #b, (1),
where b, (t) follows a normal distribution N(O,abgz), and 7,
(1) is zero-mean Gaussian noise which follows N(0,0;).

2) Accelerometer model:
The specific force measurement a(t) includes gravity,
bias, and noise:

a(t) = RT(£)(g + ba(t) +na(1)), (23)

where R(t) is the rotation matrix that transforms from the
body frame to the world frame, g=[0 0 -9.81]" m/s’ is the
gravity vector, b,(t) is the accelerometer bias (constant or
slowly varying), and #,(t) is the Gaussian noise following a
normal distribution N(0,07).
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3) Magnetometer model:
If simulating an AHRS, the magnetometer measures:

m(t) = RT(t)mref + by (8) + nm(t): (24)

where m,,;=[0.2 0 0.4]" Gauss is reference earth magnetic
field, b,,(t) is the magnetometer bias (constant or slowly
varying), and 7,(t) a Gaussian noise with distribution of
N(0,02).
Noise and Bias Parameters: To reflect realistic sensor
imperfections, the following parameters were adopted:
(a) Gyroscope
Noise (0,): 0.0035°/s/yHz, Bias Instability: 10 /hr,
Range: +450°/s.
(b) Accelerometer
Noise (0,): 50 pg/Hz, Bias Instability: 20 pg Range:
+160 m/s?.
(c) Magnetometer
Noise (0,,): 0.15 mGauss/\Hz, Bias Vector: [0.002,
-0.003, 0.001] Gauss, Range: +2.5 Gauss.

The process noise covariance Q = 3.73x10°; is derived
from the gyroscope's angular random walk of o, = 0.0035°/
s/yHz, converted to 6.11x10* rad/s at 100 Hz sampling
rate using the relation Q:ogZAt. The measurement
noise covariance R = blkdiag (2.41x10°I5, 2.25x10°%15)
incorporates the accelerometer velocity random walk of ¢,
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(@)

©

Fig. 2. Attitude estimation; (a) yaw, pitch, and roll estimation, (b) Covariance trace for yaw, pitch, and roll, (c) estimation error of yaw, pitch, and roll.
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Table 2. Comparison of attitude estimation error.

Attitude Yaw Pitch Roll

error (deg) EKF LGEKF EKF LGEKF EKF LGEKF
MN 0.4616 0.35485 1.1749 0.0002942 4.1671 0.0046262
STD 0.37703 0.26732 0.63908 0.0068367 4.0362 0.0066115
Min -1.5859 -0.97334  -3.7105e-10 -0.026141 -11.227 -0.030834
Max 0.054148 0.072937 2.1873 0.022682 3.7982 0.022099
RMS 0.596 0.44347 1.3374 0.0068429 5.1531 0.0080692

=4.91x10"® m/s? (from 50 pg/yHz) and magnetometer noise
of 0, = 1.5x10® Gauss (from 0.15 mGauss/yHz). The initial
covariance P = 1.22x107I; corresponds to an initial attitude
uncertainty of +2° (1) in each Euler angle, reflecting typical
static alignment accuracy with the XSENS MTi-G-710
specifications.

3.2 Results

This section presents a comprehensive evaluation of the
proposed LGEKEF for attitude estimation, and compares
its performance with that of the conventional EKF using
synthetic MARG sensor data. The results were analyzed
using three key metrics: attitude estimation accuracy,
covariance trace, and estimation error, as illustrated in Figs.
2 and 3 and quantified in Table 2.

Fig. 2a compares the yaw, pitch, and roll estimation
performances of the LGEKF and conventional EKF against
the ground truth. Across all three axes, the LGEKF tracked
the ground truth much more closely, maintaining small
errors even during abrupt attitude changes and large
rotation maneuvers. In yaw estimation, the LGEKF curve
almost overlapped with the ground truth throughout the
simulation, whereas the EKF exhibited significant deviations
during high-dynamic periods. Similar trends were
observed in the pitch and roll, where the EKF produced
large overshoots and undershoots, especially during
rapid orientation changes, whereas the LGEKF remained
relatively stable. These results confirm that the geometry-
preserving SO(3) formulation of the LGEKF mitigates the
drift and linearization errors, enabling robust performance
under both slow and fast rotational dynamics.

Fig. 2b depicts the evolution of the covariance traces
for all three attitude components, representing the
internal uncertainty estimates of the filter. The LGEKF
maintained consistently low covariance values close to zero
throughout the simulation, with smooth, stable traces that
demonstrated well-calibrated uncertainty quantification.
For the yaw and pitch components, the LGEKF showed
a nearly constant covariance near zero, whereas for the
roll component, both the LGEKF and EKF exhibited
gradual increases in covariance over time. However, the
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Fig. 3. Estimation statistical error.

roll covariance of the LGEKF remains significantly lower
than that of the EKF throughout the entire trajectory,
demonstrating better uncertainty management. This
stable covariance propagation indicates that the Lie group
formulation preserves consistent confidence levels despite
the dynamic motion.

Fig. 2c quantifies the absolute estimation errors for yaw,
pitch, and roll, presenting the time histories of the attitude
estimation errors for both the LGEKF and the conventional
EKF. The LGEKF demonstrated superior performance
across all three axes, maintaining significantly smaller error
magnitudes than the EKF throughout the entire simulation.
For pitch and roll estimation, the LGEKF achieves
exceptional accuracy with errors consistently near zero,
demonstrating its ability to precisely track these critical
attitude components. In contrast, the conventional EKF
exhibited substantially larger error magnitudes and more
pronounced oscillations. Overall, the figure underscores
the capability of the LGEKF to provide a more accurate,
stable, and reliable attitude estimation with a dramatically
reduced error drift and fewer large deviations compared to
the standard EKF formulation.

Table 2 and Fig. 3 demonstrate that the proposed
LGEKEF significantly outperforms the conventional EKF in
terms of both the mean and RMS errors across all attitude
components (yaw, pitch, and roll). For yaw estimation, the
mean error decreased from 0.46° (EKF) to 0.36° (LGEKF),
and the RMS error was reduced from 0.6° to 0.44°. Pitch
estimation shows a similar improvement, with mean error
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Table 3. General performance characteristics of EKF and LGEKF.

Metric EKF LGEKF Advantage
Computational performance
Total processing time 0.5636 sec  3.04 sec EKEF (5.4x faster)
Iteration time 28 ps 152 ps EKF (5.4x faster)
Max update rate 35485Hz 6,569 Hz  EKF (5.4x higher)
Accuracy & Error
Final RMSE 4.91° 0.56° LGEKEF (8.8x more accurate)
Mean roll error 4.1671° 0.007° LGEKEF (595x better)
Mean pitch error 1.1749° 0.006° LGEKEF (195x better)
Mean yaw error 0.4652° 0.36° LGEKEF (1.3x better)
Robustness & Stability
Singularity events 0 0 Both robust
Robustness score 10.0/10 10.0/10 Both perfect
Group structure N/A Areserved LGEKF
Stability assessment Limited Enhanced LGEKF
Computational distribution
Prediction time 6.8% 37.0% EKF (lighter prediction)
Update time 93.2% 63.0% Balanced
Exponential operations N/A 59.5% EKF (no exponentials)

decreasing from 1.18° to 0.0003°, and RMS error dropping
from 1.34° to 0.007°. Roll estimation benefits even more,
with mean error reducing from 4.17° to 0.005° and RMS
error decreasing sharply from 5.15° to 0.008°. These RMS
reductions indicate not only higher accuracy but also
improved stability over time. Fig. 3 visually reinforces these
results, showing consistently smaller bars for the LGEKF
across all statistical metrics, indicating the enhanced
stability, accuracy, and robustness of the proposed filter in
attitude estimation.

The comparative analysis in Table 3 reveals a clear
tradeoff between computational efficiency and estimation
accuracy. The EKF demonstrates superior computational
performance, operating 5.4 times faster than the LGEKF
with a maximum update rate of 35.5 kHz, making it
suitable for resource-constrained real-time applications.
However, it exhibits significantly poorer attitude estimation
accuracy, particularly in roll (4.17° error) and pitch (1.17°
error), owing to Euler angle singularities and linearization
limitations. In contrast, the LGEKF achieved exceptional
estimation precision with sub-degree errors across all
axes (0.56° RMSE) and near-perfect roll/pitch estimation
(0.006-0.007° errors), leveraging its Lie group formulation
to avoid singularity issues. While the LGEKF requires
3.04 of processing time primarily due of expensive matrix
exponential operations (59.5% of the computation), its
8.8x improvement in overall accuracy and guaranteed
group structure preservation make it a superior choice for
applications demanding high-precision attitude estimation.

The computational performance reported in Table
3 was measured on a desktop computer with hardware
configuration featured an Intel(R) Core(TM) i7-10700F CPU
@ 2.90 GHz and 16.0 GB of RAM. The simulations were

conducted using MATLAB R2024b.
To establish clarity and reproducibility, the performance
metrics in Table 3 are defined as follows:

o Singularity events: the number of instances in which
the algorithm encountered a mathematical singularity,
such as a gimbal lock. A value of zero indicates robust
operation without singularities throughout the
simulation.

Robustness score: A qualitative score (0-10) evaluating
the filter's resilience under challenging conditions,
including aggressive maneuvers and sensor noise,
where 10/10 indicates no observed divergence or
catastrophic failure.

Stability assessment: A qualitative evaluation based
on covariance propagation behavior and error
boundedness, where "enhanced" indicates stable,
consistent performance and "limited" suggests
potential over-confidence or error divergence.

Group structure preservation: A binary metric indicating
whether the estimated rotation matrix inherently remains
on the SO(3) manifold, satisfying the constraints R" R=I
and det(R)=+1 at all times.

4. CONCLUSIONS

This study introduced an LGEKF for attitude estimation
formulated on the special orthogonal group SO(3) and
demonstrated its advantages over conventional methods
through rigorous testing using synthetic MARG sensor data.
The proposed approach successfully addresses critical
challenges in attitude estimation by preserving the geometric
properties of rotations through an exponential map and
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eliminating the singularities and normalization issues
inherent in the Euler angle and quaternion representations.

The simulation results clearly demonstrate the superior
performance of the LGEKF compared to the standard EKF.
The proposed method maintains a higher accuracy with
sub-degree RMS errors across all attitude angles, even
during aggressive maneuvers, where traditional approaches
typically degrade. Furthermore, the LGEKF exhibits a
more stable covariance propagation, reflecting its ability
to properly account for uncertainty under high-dynamic
conditions. This robust performance stems from the filter
foundation of Lie’s group theory, which ensures geometric
consistency throughout the estimation process.

Several promising directions have emerged for extending
this study. It is important to note that this study validated the
filter under the assumption of negligible non-gravitational
acceleration; therefore, a key future direction involves
extending the LGEKEF to explicitly model and compensate
for motion-induced acceleration. Future research should
investigate the performance of the filter with real sensor
data and explore its integration with complementary
navigation systems to enhance its robustness in challenging
environments. Additional improvements could focus
on adaptive tuning mechanisms and bias compensation
techniques to further increase reliability. The mathematical
rigor and computational efficiency of the LGEKF make
it particularly suitable for implementation in resource-
constrained autonomous systems, suggesting its broad
applicability across aerospace, marine, and robotic
applications.
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