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1. Introduction

Accurate attitude estimation is a cornerstone of navigation 

and control in autonomous vehicles, spanning a diverse array of 

platforms, such as aerial drones (Sabet et al. 2018), underwater 

vehicles (Kim et al. 2011), and spacecraft (Zhu et al. 2024). As 

these systems increasingly operate in complex environments 

that are often devoid of reliable Global Positioning System 

(GPS) signals, the need for robust and drift-resistant estimation 

techniques has become critical (Alghamdi et al. 2025). These 

techniques ensure operational integrity and enhance the safety 

and reliability of autonomous systems during high-stakes 

missions.

Traditional methods for representing orientation, such 

as Euler angles, are plagued with limitations, including 

singularities such as gimbal locks, which can abruptly hinder 
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navigation capabilities (Jwo 2021). In contrast, quaternion-

based approaches offer a solution by avoiding these 

singularities; however, they introduce complications, such 

as the necessity for normalization and ambiguities in sign 

representation (Zhang et al. 2018). Such challenges highlight 

the need for alternative methods that are geometrically 

consistent and mathematically rigorous (Shi & Chen 2024).

One promising avenue lies in the utilization of the Lie group 

theory, particularly through the Special Orthogonal Group 

SO(3), which mathematically represents 3D rotation matrices 

(D'Eleuterio & Barfoot 2022). This framework not only maintains 

the essential properties of rotations, such as orthonormality and 

determinant constraints (Sol'a et al. 2018), but also eliminates 

the need for ad-hoc normalization typical of quaternion-based 

filters. The ability to handle rotations without singularities makes 

SO(3) particularly advantageous in highly dynamic scenarios, 
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where linear approximations often fail to encapsulate the 

nonlinear characteristics of rotational motion (Qin 2024).

As technology advances, the proliferation of low-cost 

Magnetometer, Accelerometer, and Rate Gyroscope (MARG) 

sensors such as MEMS-based Inertial Measurement Units 

(IMUs) has intensified the demand for robust attitude estimation 

algorithms (Hyyti & Visala 2015). These sensors, which combine 

accelerometers, gyroscopes, and magnetometers, provide a 

wealth of data that, when accurately processed, can significantly 

enhance navigation capabilities (Chu et al. 2017). Although 

Kalman filters remain the widely accepted gold standard 

for state estimation, their application to Lie groups requires 

meticulous attention to the state propagation and measurement 

models to maintain accuracy and reliability (Liu et al. 2023).

Prior research has explored various approaches, including 

invariant extended Kalman filters (IEKFs) (Chauchat et al. 2017) 

and unscented filters (Daid et al. 2020), specifically designed for 

implementation in SO(3). The proposed Lie Group Extended 

Kalman Filter (LGEKF) aims to bridge this gap by combining 

geometric invariance with enhanced nonlinear estimation fidelity.

Our study aims to present a comprehensive framework that 

enhances the robustness and accuracy of attitude estimation 

techniques.

1) �Formulating the attitude estimation problem in Lie 

group, in the framework of Extended Kalman filter.

2) Explicit derivation of Jacobian matrices of the process 

model and measurement model.

3) The filter’s performance is validated with noisy 

synthetic datasets, achieving sub-degree Root Mean 

Square (RMS) errors in yaw, pitch, and roll).

4) Deriving a process model for SO(3) that directly integrates 

gyroscopic rates via the exponential map, avoiding 

linearization errors.

5) Proposing a measurement model that fuses synthetic 

accelerometer and magnetometer data while respecting 

the group’s geometry.

1.1 Related Work

Lie group-based estimation has gained traction with the 

development of the invariant observer theory, which exploits 

symmetries in dynamical systems. For attitude estimation, 

the SO(3) formulations outperformed quaternions by 

preserving orthonormality and avoiding renormalization. 

Recent studies have shown that probabilistic filters on SO(3) 

handle uncertainty propagation more naturally, a feature that 

we leverage in our Kalman filter design (Aslam et al. 2025).

MARG sensor fusion has been extensively studied with 

lightweight solutions such as Madgwick’s gradient-descent 

filter and Mahony’s complementary filter (Hoang et al. 

2021). However, these methods often lack robust uncertainty 

quantification provided by Kalman filters. Our approach 

combines the geometric fidelity of SO(3) with the optimality of 

Kalman filtering, effectively addressing the limitations of both 

domains. A recent study (Ko et al. 2022) further demonstrated 

the effectiveness of the Lie group approach in dynamic-model-

aided navigation for multirotor UAVs, whereas (Jeong & Ko 

2024) extended this framework to underwater vehicle navigation 

by compensating for sensor misalignment using the Lie theory.

Recent advances in state estimation of manifolds have 

demonstrated that utilizing the underlying Lie group structure 

of SO(3) leads to more stable and accurate filtering methods. 

The IEKF exploits system symmetries through invariant error 

formulations to achieve theoretically appealing properties such 

as state-independent Jacobians and improved consistency 

guarantees, and enhances stability and convergence by not 

relying on the direct linearization of nonlinear processes and 

measurement models (Ko et al. 2018). This approach has 

demonstrated superior performance compared with standard 

Extended Kalman Filters (EKFs) in various applications, 

particularly in visual-inertial odometry and robotic navigation, 

where the symmetry properties are pronounced (Barrau 

& Bonnabel 2014). Another emerging trend is the direct 

use of probabilistic filtering on Lie groups, which improves 

robustness under sensor drift and noise features that align 

closely with the demands of navigation in unstructured 

environments (Guo et al. 2023).

The widespread adoption of low-cost MARG sensors has 

created opportunities for robust attitude estimation with 

reduced costs and sizes (Wu et al. 2016). Although classical 

filtering methods offer lightweight solutions, they often struggle 

in environments with sensor degradation or aggressive motion.

The present work contributes to this landscape by proposing 

an LGEKF that adopts a philosophical approach different from 

the IEKF methodology. While the IEKF emphasizes theoretical 

invariance through group symmetries, our LGEKF focuses on 

geometric consistency through an explicit treatment of the SO(3) 

manifold structure. Our approach strikes a balance among 

geometric fidelity, estimation efficiency, and robustness, making 

it ideal for embedded systems and real-time applications.

1.2 Technical Challenges and Contributions

• Gyroscopic measurements induce nonlinear state transitions 

in the SO(3). Prior linearized filters such as EKFs can diverge 

during rapid maneuvers. Our process model employs an 

exponential map to accurately propagate rotations.

• Accelerometer and magnetometer measurements must 

be projected onto SO(3) without distorting the manifold. 

We normalized the data and enforced orthonormality 
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constraints to maintain the integrity of the geometric 

framework.

1.3 Article Organization

The remainder of this paper is organized as follows. The 

methodology and outline of the main topic are presented 

in Section II. Section III presents and discusses our 

results. Finally, Section IV provides the conclusions and 

recommendations for future research.

2. PROCESS AND MEASUREMENT 
MODELS ON SO(3)

In this section, the process and measurement models 

used in the LGEKF for attitude estimation are defined. The 

formulation is grounded in the Special Orthogonal Group 

SO(3), which accurately represents the 3D rotational motion 

without singularities or overparameterization. The sensor 

inputs included triaxial angular velocity, linear acceleration, 

and magnetic field measurements from the MARG sensor 

unit.

2.1 Problem Formulation

In this section, the problem statement of the research is 

outlined, and the mathematical symbols used throughout 

the study are detailed in Table 1.

Problem Statement

Objective: To estimate the 3D orientation (attitude) of a rigid body over 
time using MARG sensor data.
Given:

(i)   Angular velocity from gyroscope,
(ii)  Specific force from accelerometer,
(iii) Magnetic field from magnetometer.

Reference Frame: The inertial frame is defined as NED.
Approach: �Employ a LGEKF formulated on SO(3) to recursively estimate 

the attitude
represented by rotation matrix R(k).
Output: R

^
(k|k), an estimate of the orientation of the body at each time step k.

 
2.2 State Representation on SO(3)

The state variable in our model is the rotation matrix 

R(k)∈SO(3) which maps vectors from the body-fixed frame 

to the inertial (world) frame. SO(3) group is defined as

SO(3) = {R ∈ R3X3|RTR = I, det(R) = +1}. (1)

This matrix describes the orientation of the body frame 

with respect to the fixed reference frame. The reference 

frame in the proposed system is the NED frame. Accordingly, 

gravity is represented by

In this section, the process and measurement models used in the LGEKF for attitude 
estimation are defined. The formulation is grounded in the Special Orthogonal Group SO(3), 
which accurately represents the 3D rotational motion without singularities or 
overparameterization. The sensor inputs included triaxial angular velocity, linear acceleration, 
and magnetic field measurements from the MARG sensor unit. 
 
2.1 Problem Formulation 
 

In this section, the problem statement of the research is outlined, and the mathematical 
symbols used throughout the study are detailed in Table 1. 
 

 
 
2.2 State Representation on SO(3) 
 

The state variable in our model is the rotation matrix         3  which maps vectors 
from the body-fixed frame to the inertial (world) frame. SO(3) group is defined as 
 

   3 = {   3𝑋𝑋3| 𝑇𝑇 = 𝐼𝐼, det   = +1}. (1) 
 

This matrix describes the orientation of the body frame with respect to the fixed reference 
frame. The reference frame in the proposed system is the NED frame. Accordingly, gravity is 
represented by 
 

𝑔𝑔𝑛𝑛 = [0 0 1]𝑇𝑇 . (2) 
 

This implies that gravity acts downward along the positive z axis in the NED frame. The 
Earth's magnetic field is denoted by  𝑛𝑛   3, a known, normalized vector in the NED frame 
obtained from geomagnetic models. 
 
2.3 Process Model 
 

Attitude dynamics are driven by the angular velocity vector measured in the body frame. 

 
 
Objective: To estimate the 3D orientation (attitude) of a rigid body over time using 
MARG sensor data. 
Given: 

(i) Angular velocity from gyroscope, 
(ii) Specific force from accelerometer, 
(iii) Magnetic field from magnetometer. 

Reference Frame: The inertial frame is defined as NED. 
Approach: Employ a LGEKF formulated on SO(3) to recursively estimate the attitude 

represented by rotation matrix 𝑅𝑅 𝑘𝑘 . 
Output: 𝑅𝑅  𝑘𝑘|𝑘𝑘 , an estimate of the orientation of the body at each time step k. 

Problem Statement 
 

(2)

Table 1.  Symbols used in this paper.

Symbol Description
R(k) Rotation matrix from body frame to inertial (NED) frame at time k; R(k)∈SO(3)
ω(k) Angular velocity vector∈R3, measured by gyroscope, expressed as [p(k),q(k),r(k)]T

p(k), q(k), r(k) Roll, pitch, and yaw rates respectively at time k, measured in rad/s from the gyroscope
gn Known gravity vector in the NED frame, typically [0,0,1]T

mn Known, normalized magnetic field vector in the NED frame
ab(k) Accelerometer output in the body frame at time k
mb(k) Magnetometer output in the body frame at time k
a~b(k) Normalized accelerometer vector
m~ b(k) Normalized magnetometer vector
z(k) Measurement vector, stacking both normalized sensor readings: z(k)∈R6

Δt Sampling interval or time step
· × Skew-symmetric matrix operator for cross-product in SO(3)

R
^

(k|k) Estimation of attitude represented in SO(3)
F(k) Jacobian of the process model with respect to the rotation state R(k).
H(k) Jacobian of the measurement model with respect to the rotation state R(k).
Q(k) Process noise covariance matrix
V(k) Measurement noise covariance matrix
P(k) Covariance matrix of the attitude estimation error
K(k) Kalman gain matrix
e(k) Innovation (residual) vector in the measurement update step
exp(·) Exponential map
τ Tangent-space perturbation induced by the gyroscope noise.
bg(t), ba(t), bm(t) Time-varying biases for gyroscope, accelerometer, and magnetometer, respectively.
ηg(t), ηa(t), ηm(t) Gaussian noise terms for gyroscope, accelerometer, and magnetometer, respectively.
σg(t), σa(t), σm(t) Standard deviations of sensor noise for gyroscope, accelerometer, and magnetometer, respectively.



344    JPNT 14(4), 341-351 (2025)

https://doi.org/10.11003/JPNT.2025.14.4.341

This implies that gravity acts downward along the 

positive z axis in the NED frame. The Earth's magnetic field 

is denoted by mn∈R3, a known, normalized vector in the 

NED frame obtained from geomagnetic models.

2.3 Process Model

Attitude dynamics are driven by the angular velocity 

vector measured in the body frame.
 

𝜔𝜔   = [
𝑝𝑝   
𝑞𝑞   
𝑟𝑟   

]. (3) 

 
The continuous-time rotational motion is discretized using the exponential map from the Lie 

algebra SO(3), leading to a discrete-time attitude update: 
 

   + 1 =     exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡 . (4) 
 

Process Noise Incorporation: The process noise enters through gyroscopic measurements 
during state propagation. Considering the noisy angular velocity measurement 𝜔̃𝜔   = 𝜔𝜔   +
 𝑔𝑔    where  𝑔𝑔      0, 𝑔𝑔  is zero-mean Gaussian noise, the discrete-time process model 
accounts for uncertainty as shown in Eq. (4). The process noise covariance      in the filter 
represents the linearized effect of  𝑔𝑔    on the state in the tangent space of SO(3). 

The skew-symmetric matrix ⌊    ⌋× is given by: 
 

⌊𝜔𝜔   ⌋× = [
0 −𝑟𝑟   𝑞𝑞   
𝑟𝑟   0 −𝑝𝑝   
−𝑞𝑞   𝑝𝑝   0

]. (5) 

 
This matrix encodes the cross-product operation, and when used in the exponential map (Eq. 

(4)) ensures that the updated rotation    + 1  remains on SO(3), preserving the orthonormality 
and avoiding drift. 
 
2.4 Measurement Model 
 

The measurement model fuses normalized accelerometer and magnetometer data to estimate 
the vehicle orientation. These sensor readings were expressed in the body frame and mapped to 
known reference vectors in the inertial (navigation) frame. 
 
2.4.1 Normalization of sensor measurement data 
 

At each time step, the raw accelerometer and magnetometer outputs are: 
 

𝑎𝑎𝑏𝑏   = [
𝑎𝑎𝑥𝑥   
𝑎𝑎𝑦𝑦   
𝑎𝑎𝑧𝑧   

] , 𝑏𝑏   = [
 𝑥𝑥   
 𝑦𝑦   
 𝑧𝑧   

]. (6) 

 
Normalized accelerometer (𝑎𝑎𝑏𝑏   ) and magnetometer ( 𝑏𝑏   ) measurements are: 

 

𝑎̃𝑎𝑏𝑏   = 𝑎𝑎𝑏𝑏   
‖𝑎𝑎𝑏𝑏   ‖ ,  ̃𝑏𝑏   =  𝑏𝑏   

‖ 𝑏𝑏   ‖. (7) 
 

The full measurement vector is: 

(3)

The continuous-time rotational motion is discretized 

using the exponential map from the Lie algebra SO(3), 

leading to a discrete-time attitude update:
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0 −𝑟𝑟   𝑞𝑞   
𝑟𝑟   0 −𝑝𝑝   
−𝑞𝑞   𝑝𝑝   0

]. (5) 

 
This matrix encodes the cross-product operation, and when used in the exponential map (Eq. 

(4)) ensures that the updated rotation    + 1  remains on SO(3), preserving the orthonormality 
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2.4 Measurement Model 
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the vehicle orientation. These sensor readings were expressed in the body frame and mapped to 
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] , 𝑏𝑏   = [
 𝑥𝑥   
 𝑦𝑦   
 𝑧𝑧   

]. (6) 

 
Normalized accelerometer (𝑎𝑎𝑏𝑏   ) and magnetometer ( 𝑏𝑏   ) measurements are: 

 

𝑎̃𝑎𝑏𝑏   = 𝑎𝑎𝑏𝑏   
‖𝑎𝑎𝑏𝑏   ‖ ,  ̃𝑏𝑏   =  𝑏𝑏   

‖ 𝑏𝑏   ‖. (7) 
 

The full measurement vector is: 

(4)

Process Noise Incorporation: The process noise enters 

through gyroscopic measurements during state propagation. 

Considering the noisy angular velocity measurement 

ω~(k)=ω(k)+wg(k) where wg(k)~N(0,Qg) is zero-mean Gaussian 

noise, the discrete-time process model accounts for 

uncertainty as shown in Eq. (4). The process noise covariance 

Q(k) in the filter represents the linearized effect of wg (k) on 

the state in the tangent space of SO(3).

The skew-symmetric matrix ω(k)  × is given by:
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The full measurement vector is: 

(5)

This matrix encodes the cross-product operation, and 

when used in the exponential map (Eq. (4)) ensures that the 

updated rotation R(k+1) remains on SO(3), preserving the 

orthonormality and avoiding drift.

2.4 Measurement Model

The measurement model fuses normalized accelerometer 

and magnetometer data to estimate the vehicle orientation. 

These sensor readings were expressed in the body frame 

and mapped to known reference vectors in the inertial 

(navigation) frame.

2.4.1 Normalization of sensor measurement data

At each time step, the raw accelerometer and magnetometer 

outputs are:
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(6)

Normalized accelerometer (ab (k)) and magnetometer (mb 

(k)) measurements are:
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2.6 Lie Group Extended Kalman Filter Formulation

The LGEKF operates through the following prediction 

and correction steps:
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    + 1|  =     |   exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡  (13) 
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𝐾𝐾  + 1 = 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 [𝐻𝐻  + 1 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 + 𝑉𝑉]−1 (15) 
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+ 𝐾𝐾  + 1  𝐾𝐾  + 1  

(18) 

 
This formulation ensures that attitude estimation remains consistent with the geometry of 

SO(3), enabling robust and accurate performance even in highly dynamic environments. 
 

2.7 Estimation Error Definition on SO(3) 
 

A critical aspect of applying a Kalman filter to a manifold is the proper definition of the 
estimation error. Following the Lie theory framework (Sol'a et al. 2018), we define a right-
invariant error that measures the discrepancy of the estimate from the truth. The right-invariant 
estimation error is defined by using the following convention: 
 

𝛿𝛿𝛿𝛿   =     |  ⊖ true   = log { true   ⁻¹    |  },  (19) 
 
where 𝛿𝛿𝛿𝛿     3 represents the error vector in the Lie algebra SO(3). The error covariance 
matrix 𝑃𝑃    is then defined as 
 

𝑃𝑃   = 𝐸𝐸[𝛿𝛿𝛿𝛿    𝛿𝛿𝛿𝛿𝑇𝑇   ]. (20) 
 

The process noise covariance      represents the covariance of the gyroscope noise vector 
     . The gyroscope noise enters the rotation propagation through the exponential map, 
producing a perturbation   in the Lie algebra tangent space. Therefore, the process noise 
covariance in the Lie algebra is 

(13)
 

    + 1|  =     |   exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡  (13) 
 

𝑃𝑃  + 1|  = 𝐹𝐹   𝑃𝑃  |  𝐹𝐹𝑇𝑇   +      (14) 
 

Correction: 
Kalman Gain: 
 

𝐾𝐾  + 1 = 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 [𝐻𝐻  + 1 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 + 𝑉𝑉]−1 (15) 
 

Innovation: 
 

𝑒𝑒  + 1 = 𝑧𝑧  + 1 − ℎ     + 1|    (16) 
 

State Update: 
 

    + 1| + 1 =     + 1|   exp ⌊𝐾𝐾  + 1 𝑒𝑒  + 1 ⌋×   (17) 
 

Covariance Update: 
 

𝑃𝑃  + 1| + 1 
= (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑃𝑃  + 1 (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑇𝑇

+ 𝐾𝐾  + 1  𝐾𝐾  + 1  

(18) 

 
This formulation ensures that attitude estimation remains consistent with the geometry of 

SO(3), enabling robust and accurate performance even in highly dynamic environments. 
 

2.7 Estimation Error Definition on SO(3) 
 

A critical aspect of applying a Kalman filter to a manifold is the proper definition of the 
estimation error. Following the Lie theory framework (Sol'a et al. 2018), we define a right-
invariant error that measures the discrepancy of the estimate from the truth. The right-invariant 
estimation error is defined by using the following convention: 
 

𝛿𝛿𝛿𝛿   =     |  ⊖ true   = log { true   ⁻¹    |  },  (19) 
 
where 𝛿𝛿𝛿𝛿     3 represents the error vector in the Lie algebra SO(3). The error covariance 
matrix 𝑃𝑃    is then defined as 
 

𝑃𝑃   = 𝐸𝐸[𝛿𝛿𝛿𝛿    𝛿𝛿𝛿𝛿𝑇𝑇   ]. (20) 
 

The process noise covariance      represents the covariance of the gyroscope noise vector 
     . The gyroscope noise enters the rotation propagation through the exponential map, 
producing a perturbation   in the Lie algebra tangent space. Therefore, the process noise 
covariance in the Lie algebra is 

(14)

Correction:

Kalman Gain:

 
    + 1|  =     |   exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡  (13) 

 
𝑃𝑃  + 1|  = 𝐹𝐹   𝑃𝑃  |  𝐹𝐹𝑇𝑇   +      (14) 

 
Correction: 
Kalman Gain: 
 

𝐾𝐾  + 1 = 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 [𝐻𝐻  + 1 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 + 𝑉𝑉]−1 (15) 
 

Innovation: 
 

𝑒𝑒  + 1 = 𝑧𝑧  + 1 − ℎ     + 1|    (16) 
 

State Update: 
 

    + 1| + 1 =     + 1|   exp ⌊𝐾𝐾  + 1 𝑒𝑒  + 1 ⌋×   (17) 
 

Covariance Update: 
 

𝑃𝑃  + 1| + 1 
= (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑃𝑃  + 1 (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑇𝑇

+ 𝐾𝐾  + 1  𝐾𝐾  + 1  

(18) 

 
This formulation ensures that attitude estimation remains consistent with the geometry of 

SO(3), enabling robust and accurate performance even in highly dynamic environments. 
 

2.7 Estimation Error Definition on SO(3) 
 

A critical aspect of applying a Kalman filter to a manifold is the proper definition of the 
estimation error. Following the Lie theory framework (Sol'a et al. 2018), we define a right-
invariant error that measures the discrepancy of the estimate from the truth. The right-invariant 
estimation error is defined by using the following convention: 
 

𝛿𝛿𝛿𝛿   =     |  ⊖ true   = log { true   ⁻¹    |  },  (19) 
 
where 𝛿𝛿𝛿𝛿     3 represents the error vector in the Lie algebra SO(3). The error covariance 
matrix 𝑃𝑃    is then defined as 
 

𝑃𝑃   = 𝐸𝐸[𝛿𝛿𝛿𝛿    𝛿𝛿𝛿𝛿𝑇𝑇   ]. (20) 
 

The process noise covariance      represents the covariance of the gyroscope noise vector 
     . The gyroscope noise enters the rotation propagation through the exponential map, 
producing a perturbation   in the Lie algebra tangent space. Therefore, the process noise 
covariance in the Lie algebra is 

 
    + 1|  =     |   exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡  (13) 

 
𝑃𝑃  + 1|  = 𝐹𝐹   𝑃𝑃  |  𝐹𝐹𝑇𝑇   +      (14) 

 
Correction: 
Kalman Gain: 
 

𝐾𝐾  + 1 = 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 [𝐻𝐻  + 1 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 + 𝑉𝑉]−1 (15) 
 

Innovation: 
 

𝑒𝑒  + 1 = 𝑧𝑧  + 1 − ℎ     + 1|    (16) 
 

State Update: 
 

    + 1| + 1 =     + 1|   exp ⌊𝐾𝐾  + 1 𝑒𝑒  + 1 ⌋×   (17) 
 

Covariance Update: 
 

𝑃𝑃  + 1| + 1 
= (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑃𝑃  + 1 (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑇𝑇

+ 𝐾𝐾  + 1  𝐾𝐾  + 1  

(18) 

 
This formulation ensures that attitude estimation remains consistent with the geometry of 

SO(3), enabling robust and accurate performance even in highly dynamic environments. 
 

2.7 Estimation Error Definition on SO(3) 
 

A critical aspect of applying a Kalman filter to a manifold is the proper definition of the 
estimation error. Following the Lie theory framework (Sol'a et al. 2018), we define a right-
invariant error that measures the discrepancy of the estimate from the truth. The right-invariant 
estimation error is defined by using the following convention: 
 

𝛿𝛿𝛿𝛿   =     |  ⊖ true   = log { true   ⁻¹    |  },  (19) 
 
where 𝛿𝛿𝛿𝛿     3 represents the error vector in the Lie algebra SO(3). The error covariance 
matrix 𝑃𝑃    is then defined as 
 

𝑃𝑃   = 𝐸𝐸[𝛿𝛿𝛿𝛿    𝛿𝛿𝛿𝛿𝑇𝑇   ]. (20) 
 

The process noise covariance      represents the covariance of the gyroscope noise vector 
     . The gyroscope noise enters the rotation propagation through the exponential map, 
producing a perturbation   in the Lie algebra tangent space. Therefore, the process noise 
covariance in the Lie algebra is 

(15)

Innovation:

 
    + 1|  =     |   exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡  (13) 

 
𝑃𝑃  + 1|  = 𝐹𝐹   𝑃𝑃  |  𝐹𝐹𝑇𝑇   +      (14) 

 
Correction: 
Kalman Gain: 
 

𝐾𝐾  + 1 = 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 [𝐻𝐻  + 1 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 + 𝑉𝑉]−1 (15) 
 

Innovation: 
 

𝑒𝑒  + 1 = 𝑧𝑧  + 1 − ℎ     + 1|    (16) 
 

State Update: 
 

    + 1| + 1 =     + 1|   exp ⌊𝐾𝐾  + 1 𝑒𝑒  + 1 ⌋×   (17) 
 

Covariance Update: 
 

𝑃𝑃  + 1| + 1 
= (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑃𝑃  + 1 (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑇𝑇

+ 𝐾𝐾  + 1  𝐾𝐾  + 1  

(18) 

 
This formulation ensures that attitude estimation remains consistent with the geometry of 

SO(3), enabling robust and accurate performance even in highly dynamic environments. 
 

2.7 Estimation Error Definition on SO(3) 
 

A critical aspect of applying a Kalman filter to a manifold is the proper definition of the 
estimation error. Following the Lie theory framework (Sol'a et al. 2018), we define a right-
invariant error that measures the discrepancy of the estimate from the truth. The right-invariant 
estimation error is defined by using the following convention: 
 

𝛿𝛿𝛿𝛿   =     |  ⊖ true   = log { true   ⁻¹    |  },  (19) 
 
where 𝛿𝛿𝛿𝛿     3 represents the error vector in the Lie algebra SO(3). The error covariance 
matrix 𝑃𝑃    is then defined as 
 

𝑃𝑃   = 𝐸𝐸[𝛿𝛿𝛿𝛿    𝛿𝛿𝛿𝛿𝑇𝑇   ]. (20) 
 

The process noise covariance      represents the covariance of the gyroscope noise vector 
     . The gyroscope noise enters the rotation propagation through the exponential map, 
producing a perturbation   in the Lie algebra tangent space. Therefore, the process noise 
covariance in the Lie algebra is 

(16)

State Update:

 
    + 1|  =     |   exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡  (13) 

 
𝑃𝑃  + 1|  = 𝐹𝐹   𝑃𝑃  |  𝐹𝐹𝑇𝑇   +      (14) 

 
Correction: 
Kalman Gain: 
 

𝐾𝐾  + 1 = 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 [𝐻𝐻  + 1 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 + 𝑉𝑉]−1 (15) 
 

Innovation: 
 

𝑒𝑒  + 1 = 𝑧𝑧  + 1 − ℎ     + 1|    (16) 
 

State Update: 
 

    + 1| + 1 =     + 1|   exp ⌊𝐾𝐾  + 1 𝑒𝑒  + 1 ⌋×   (17) 
 

Covariance Update: 
 

𝑃𝑃  + 1| + 1 
= (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑃𝑃  + 1 (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑇𝑇

+ 𝐾𝐾  + 1  𝐾𝐾  + 1  

(18) 

 
This formulation ensures that attitude estimation remains consistent with the geometry of 

SO(3), enabling robust and accurate performance even in highly dynamic environments. 
 

2.7 Estimation Error Definition on SO(3) 
 

A critical aspect of applying a Kalman filter to a manifold is the proper definition of the 
estimation error. Following the Lie theory framework (Sol'a et al. 2018), we define a right-
invariant error that measures the discrepancy of the estimate from the truth. The right-invariant 
estimation error is defined by using the following convention: 
 

𝛿𝛿𝛿𝛿   =     |  ⊖ true   = log { true   ⁻¹    |  },  (19) 
 
where 𝛿𝛿𝛿𝛿     3 represents the error vector in the Lie algebra SO(3). The error covariance 
matrix 𝑃𝑃    is then defined as 
 

𝑃𝑃   = 𝐸𝐸[𝛿𝛿𝛿𝛿    𝛿𝛿𝛿𝛿𝑇𝑇   ]. (20) 
 

The process noise covariance      represents the covariance of the gyroscope noise vector 
     . The gyroscope noise enters the rotation propagation through the exponential map, 
producing a perturbation   in the Lie algebra tangent space. Therefore, the process noise 
covariance in the Lie algebra is 

(17)

Covariance Update:

 
    + 1|  =     |   exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡  (13) 

 
𝑃𝑃  + 1|  = 𝐹𝐹   𝑃𝑃  |  𝐹𝐹𝑇𝑇   +      (14) 

 
Correction: 
Kalman Gain: 
 

𝐾𝐾  + 1 = 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 [𝐻𝐻  + 1 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 + 𝑉𝑉]−1 (15) 
 

Innovation: 
 

𝑒𝑒  + 1 = 𝑧𝑧  + 1 − ℎ     + 1|    (16) 
 

State Update: 
 

    + 1| + 1 =     + 1|   exp ⌊𝐾𝐾  + 1 𝑒𝑒  + 1 ⌋×   (17) 
 

Covariance Update: 
 

𝑃𝑃  + 1| + 1 
= (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑃𝑃  + 1 (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑇𝑇

+ 𝐾𝐾  + 1  𝐾𝐾  + 1  

(18) 

 
This formulation ensures that attitude estimation remains consistent with the geometry of 

SO(3), enabling robust and accurate performance even in highly dynamic environments. 
 

2.7 Estimation Error Definition on SO(3) 
 

A critical aspect of applying a Kalman filter to a manifold is the proper definition of the 
estimation error. Following the Lie theory framework (Sol'a et al. 2018), we define a right-
invariant error that measures the discrepancy of the estimate from the truth. The right-invariant 
estimation error is defined by using the following convention: 
 

𝛿𝛿𝛿𝛿   =     |  ⊖ true   = log { true   ⁻¹    |  },  (19) 
 
where 𝛿𝛿𝛿𝛿     3 represents the error vector in the Lie algebra SO(3). The error covariance 
matrix 𝑃𝑃    is then defined as 
 

𝑃𝑃   = 𝐸𝐸[𝛿𝛿𝛿𝛿    𝛿𝛿𝛿𝛿𝑇𝑇   ]. (20) 
 

The process noise covariance      represents the covariance of the gyroscope noise vector 
     . The gyroscope noise enters the rotation propagation through the exponential map, 
producing a perturbation   in the Lie algebra tangent space. Therefore, the process noise 
covariance in the Lie algebra is 

 
    + 1|  =     |   exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡  (13) 

 
𝑃𝑃  + 1|  = 𝐹𝐹   𝑃𝑃  |  𝐹𝐹𝑇𝑇   +      (14) 

 
Correction: 
Kalman Gain: 
 

𝐾𝐾  + 1 = 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 [𝐻𝐻  + 1 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 + 𝑉𝑉]−1 (15) 
 

Innovation: 
 

𝑒𝑒  + 1 = 𝑧𝑧  + 1 − ℎ     + 1|    (16) 
 

State Update: 
 

    + 1| + 1 =     + 1|   exp ⌊𝐾𝐾  + 1 𝑒𝑒  + 1 ⌋×   (17) 
 

Covariance Update: 
 

𝑃𝑃  + 1| + 1 
= (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑃𝑃  + 1 (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑇𝑇

+ 𝐾𝐾  + 1  𝐾𝐾  + 1  

(18) 

 
This formulation ensures that attitude estimation remains consistent with the geometry of 

SO(3), enabling robust and accurate performance even in highly dynamic environments. 
 

2.7 Estimation Error Definition on SO(3) 
 

A critical aspect of applying a Kalman filter to a manifold is the proper definition of the 
estimation error. Following the Lie theory framework (Sol'a et al. 2018), we define a right-
invariant error that measures the discrepancy of the estimate from the truth. The right-invariant 
estimation error is defined by using the following convention: 
 

𝛿𝛿𝛿𝛿   =     |  ⊖ true   = log { true   ⁻¹    |  },  (19) 
 
where 𝛿𝛿𝛿𝛿     3 represents the error vector in the Lie algebra SO(3). The error covariance 
matrix 𝑃𝑃    is then defined as 
 

𝑃𝑃   = 𝐸𝐸[𝛿𝛿𝛿𝛿    𝛿𝛿𝛿𝛿𝑇𝑇   ]. (20) 
 

The process noise covariance      represents the covariance of the gyroscope noise vector 
     . The gyroscope noise enters the rotation propagation through the exponential map, 
producing a perturbation   in the Lie algebra tangent space. Therefore, the process noise 
covariance in the Lie algebra is 

 
    + 1|  =     |   exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡  (13) 

 
𝑃𝑃  + 1|  = 𝐹𝐹   𝑃𝑃  |  𝐹𝐹𝑇𝑇   +      (14) 

 
Correction: 
Kalman Gain: 
 

𝐾𝐾  + 1 = 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 [𝐻𝐻  + 1 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 + 𝑉𝑉]−1 (15) 
 

Innovation: 
 

𝑒𝑒  + 1 = 𝑧𝑧  + 1 − ℎ     + 1|    (16) 
 

State Update: 
 

    + 1| + 1 =     + 1|   exp ⌊𝐾𝐾  + 1 𝑒𝑒  + 1 ⌋×   (17) 
 

Covariance Update: 
 

𝑃𝑃  + 1| + 1 
= (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑃𝑃  + 1 (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑇𝑇

+ 𝐾𝐾  + 1  𝐾𝐾  + 1  

(18) 

 
This formulation ensures that attitude estimation remains consistent with the geometry of 

SO(3), enabling robust and accurate performance even in highly dynamic environments. 
 

2.7 Estimation Error Definition on SO(3) 
 

A critical aspect of applying a Kalman filter to a manifold is the proper definition of the 
estimation error. Following the Lie theory framework (Sol'a et al. 2018), we define a right-
invariant error that measures the discrepancy of the estimate from the truth. The right-invariant 
estimation error is defined by using the following convention: 
 

𝛿𝛿𝛿𝛿   =     |  ⊖ true   = log { true   ⁻¹    |  },  (19) 
 
where 𝛿𝛿𝛿𝛿     3 represents the error vector in the Lie algebra SO(3). The error covariance 
matrix 𝑃𝑃    is then defined as 
 

𝑃𝑃   = 𝐸𝐸[𝛿𝛿𝛿𝛿    𝛿𝛿𝛿𝛿𝑇𝑇   ]. (20) 
 

The process noise covariance      represents the covariance of the gyroscope noise vector 
     . The gyroscope noise enters the rotation propagation through the exponential map, 
producing a perturbation   in the Lie algebra tangent space. Therefore, the process noise 
covariance in the Lie algebra is 

 
    + 1|  =     |   exp ⌊𝜔𝜔   ⌋×∆𝑡𝑡  (13) 

 
𝑃𝑃  + 1|  = 𝐹𝐹   𝑃𝑃  |  𝐹𝐹𝑇𝑇   +      (14) 

 
Correction: 
Kalman Gain: 
 

𝐾𝐾  + 1 = 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 [𝐻𝐻  + 1 𝑃𝑃  + 1|  𝐻𝐻𝑇𝑇  + 1 + 𝑉𝑉]−1 (15) 
 

Innovation: 
 

𝑒𝑒  + 1 = 𝑧𝑧  + 1 − ℎ     + 1|    (16) 
 

State Update: 
 

    + 1| + 1 =     + 1|   exp ⌊𝐾𝐾  + 1 𝑒𝑒  + 1 ⌋×   (17) 
 

Covariance Update: 
 

𝑃𝑃  + 1| + 1 
= (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑃𝑃  + 1 (𝐼𝐼 − 𝐾𝐾  + 1 𝐻𝐻  + 1 )𝑇𝑇

+ 𝐾𝐾  + 1  𝐾𝐾  + 1  

(18) 

 
This formulation ensures that attitude estimation remains consistent with the geometry of 

SO(3), enabling robust and accurate performance even in highly dynamic environments. 
 

2.7 Estimation Error Definition on SO(3) 
 

A critical aspect of applying a Kalman filter to a manifold is the proper definition of the 
estimation error. Following the Lie theory framework (Sol'a et al. 2018), we define a right-
invariant error that measures the discrepancy of the estimate from the truth. The right-invariant 
estimation error is defined by using the following convention: 
 

𝛿𝛿𝛿𝛿   =     |  ⊖ true   = log { true   ⁻¹    |  },  (19) 
 
where 𝛿𝛿𝛿𝛿     3 represents the error vector in the Lie algebra SO(3). The error covariance 
matrix 𝑃𝑃    is then defined as 
 

𝑃𝑃   = 𝐸𝐸[𝛿𝛿𝛿𝛿    𝛿𝛿𝛿𝛿𝑇𝑇   ]. (20) 
 

The process noise covariance      represents the covariance of the gyroscope noise vector 
     . The gyroscope noise enters the rotation propagation through the exponential map, 
producing a perturbation   in the Lie algebra tangent space. Therefore, the process noise 
covariance in the Lie algebra is 

(18)

This formulation ensures that attitude estimation remains 

consistent with the geometry of SO(3), enabling robust and 

accurate performance even in highly dynamic environments.

2.7 Estimation Error Definition on SO(3)

A critical aspect of applying a Kalman filter to a manifold 

is the proper definition of the estimation error. Following 

the Lie theory framework (Sol'a et al. 2018), we define a 

right-invariant error that measures the discrepancy of the 

estimate from the truth. The right-invariant estimation error 

is defined by using the following convention:

δθ(k) = R^ (k|k) Ѳ Rtrue(k) = log{Rtrue(k)-1R^ (k|k)}, (19)

where δθ(k)∈R3 represents the error vector in the Lie algebra 

SO(3). The error covariance matrix P(k) is then defined as

P(k) = E[δ(k) δθT (k)]. (20)

The process noise covariance Q(k) represents the 

covariance of the gyroscope noise vector wg(k). The gyroscope 

noise enters the rotation propagation through the exponential 

map, producing a perturbation τ in the Lie algebra tangent 

space. Therefore, the process noise covariance in the Lie 

algebra is 
    = 𝐸𝐸[   𝑇𝑇], (21) 

 
where    3 represents the tangent-space perturbation induced by the gyroscope noise. 
 
3. SIMULATION RESULTS AND DISCUSSION 
 

This section presents a thorough validation of the proposed LGEKF through comprehensive 
simulations with emphasis on attitude estimation accuracy. To establish a robust benchmark, we 
compared the LGEKF with the conventional EKF, which is a widely recognized and extensively 
utilized baseline in nonlinear state estimation. 

The EKF operates as a conventional filter for attitude estimation and lacks sophisticated 
techniques integrated within the LGEKF. Our analysis focuses on the precision of the attitude 
estimation results, highlighting the advantages of the proposed method. The results illustrated in 
the accompanying figures demonstrate the comparative performance of both methods across 
various scenarios. 
3.1 Simulation Setup 
 

To rigorously evaluate the performance of the proposed LGEKF against that of the 
conventional EKF, we generated synthetic sensor data based on a helical trajectory (Fig. 1), 
which is a dynamic motion profile that combines continuous rotation and translation. The 
corresponding sensor measurements, including the gyroscope, accelerometer, and magnetometer 
data, were corrupted with realistic MEMS noise and biases to emulate low-cost MARG sensor 
behavior under demanding motion conditions. This trajectory challenges filters with time-
varying angular velocities and accelerations, mimicking real-world scenarios, such as 
autonomous underwater vehicle (AUV) maneuvers. 
 
3.1.1 Synthetic trajectory generation 
 

The true attitude motion follows a 3D helical path defined by: 
 Angular velocity 𝜔𝜔 𝑡𝑡 : Time-varying, with sinusoidal components in the body frame to 
simulate agile rotations. 

 Position and acceleration: Attitude dynamics were coupled to ensure physically 
consistent accelerometer measurements. 

 
3.1.2 Sensor models: 
 

The synthetic measurements for the gyroscope and accelerometer were modeled with 
realistic noise and bias characteristics, emulating the low-cost MEMS sensors commonly used in 
practical applications. 
 
1) Gyroscope model: 
 

The measured angular velocity 𝜔̃𝜔 𝑡𝑡  is corrupted by time-varying bias  𝑔𝑔 𝑡𝑡  and Gaussian 
noise  𝑔𝑔 𝑡𝑡 : 
 

(21)
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performance of both methods across various scenarios.
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which is a dynamic motion profile that combines continuous 

rotation and translation. The corresponding sensor 

measurements, including the gyroscope, accelerometer, and 

magnetometer data, were corrupted with realistic MEMS 

noise and biases to emulate low-cost MARG sensor behavior 

under demanding motion conditions. This trajectory 

challenges filters with time-varying angular velocities and 

accelerations, mimicking real-world scenarios, such as 

autonomous underwater vehicle (AUV) maneuvers.

3.1.1 Synthetic trajectory generation

The true attitude motion follows a 3D helical path defined 

by:

• Angular velocity ω(t): Time-varying, with sinusoidal 

components in the body frame to simulate agile 

rotations.

• Position and acceleration: Attitude dynamics were 

coupled to ensure physically consistent accelerometer 

measurements.

3.1.2 Sensor models
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The synthetic measurements for the gyroscope and 

accelerometer were modeled with realistic noise and bias 

characteristics, emulating the low-cost MEMS sensors 

commonly used in practical applications.

1) Gyroscope model:

The measured angular velocity ω~ (t) is corrupted by time-

varying bias bg (t) and Gaussian noise ηg (t):

𝜔̃𝜔 𝑡𝑡 = 𝜔𝜔 𝑡𝑡 +  𝑔𝑔 𝑡𝑡 +  𝑔𝑔 𝑡𝑡 , (22) 
 
where 𝜔𝜔 𝑡𝑡  is true angular velocity (in rad/s),  𝑔𝑔 𝑡𝑡  is bias modeled as a random walk process 
given by  𝑔̇𝑔 𝑡𝑡  =   𝑔𝑔 𝑡𝑡 , where   𝑔𝑔 𝑡𝑡  follows a normal distribution   0,  𝑔𝑔  , and  𝑔𝑔 𝑡𝑡  is 
zero-mean Gaussian noise which follows   0, 𝑔𝑔  . 
 
2) Accelerometer model: 
 

The specific force measurement  ̃ 𝑡𝑡  includes gravity, bias, and noise: 
 

𝑎̃𝑎 𝑡𝑡 =  𝑇𝑇 𝑡𝑡  𝑔𝑔 +  𝑎𝑎 𝑡𝑡 +  𝑎𝑎 𝑡𝑡  , (23) 
 
where   𝑡𝑡  is the rotation matrix that transforms from the body frame to the world frame, 
g = [0 0 − . 1]𝑇𝑇  m/s2 is the gravity vector,  𝑎𝑎 𝑡𝑡  is the accelerometer bias (constant or 
slowly varying), and  𝑎𝑎 𝑡𝑡  is the Gaussian noise following a normal distribution   0, 𝑎𝑎  . 
 
3) Magnetometer model 
 

If simulating an AHRS, the magnetometer measures: 
 

 ̃ 𝑡𝑡 =  𝑇𝑇 𝑡𝑡  𝑟𝑟𝑟𝑟𝑟𝑟 +  𝑚𝑚 𝑡𝑡 +  𝑚𝑚 𝑡𝑡 , (24) 
 
where  𝑟𝑟𝑟𝑟𝑟𝑟 = [0.2 0 0.4]𝑇𝑇  Gauss is reference earth magnetic field,  𝑚𝑚 𝑡𝑡  is the 
magnetometer bias (constant or slowly varying), and  𝑚𝑚 𝑡𝑡  a Gaussian noise with distribution of 
  0, 𝑚𝑚  . 

Noise and Bias Parameters: To reflect realistic sensor imperfections, the following 
parameters were adopted: 

 Gyroscope: 
 Noise ( 𝑔𝑔): 0.0035°/s/√Hz, Bias Instability: 10 /hr, Range: ±450 °/s. 

 Accelerometer: 
 Noise ( 𝑎𝑎): 50 µg/√Hz, Bias Instability: 20 µg Range: ±160 m/s². 

 Magnetometer: 
 Noise ( 𝑚𝑚): 0.15 mGauss/√Hz, Bias Vector: [0.002, -0.003, 0.001] 

Gauss, Range: ±2.5 Gauss. 
 

The process noise covariance Q = 3.73×10⁻⁹I₃ is derived from the gyroscope's angular 
random walk of  𝑔𝑔 = 0.0035°/s/√Hz, converted to 6.11×10⁻⁴ rad/s at 100 Hz sampling rate using 
the relation Q =  𝑔𝑔²Δt. The measurement noise covariance R = blkdiag (2.41×10⁻⁵I₃, 2.25×10⁻⁶I₃) 
incorporates the accelerometer velocity random walk of  𝑎𝑎 = 4.91×10⁻³ m/s² (from 50 µg/√Hz) 
and magnetometer noise of  𝑚𝑚  = 1.5×10⁻³ Gauss (from 0.15 mGauss/√Hz). The initial 
covariance P = 1.22×10⁻³I₃ corresponds to an initial attitude uncertainty of ±2° (1σ) in each 
Euler angle, reflecting typical static alignment accuracy with the XSENS MTi-G-710 
specifications. 
 
3.2 Results 

(22)

where ω(t) is true angular velocity (in rad/s), bg(t) is bias 

modeled as a random walk process given by bg(t) = ηbg (t), 

where ηbg (t) follows a normal distribution N(0,σbg
2), and ηg 

(t) is zero-mean Gaussian noise which follows N(0,σg
2).
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3) Magnetometer model 
 

If simulating an AHRS, the magnetometer measures: 
 

 ̃ 𝑡𝑡 =  𝑇𝑇 𝑡𝑡  𝑟𝑟𝑟𝑟𝑟𝑟 +  𝑚𝑚 𝑡𝑡 +  𝑚𝑚 𝑡𝑡 , (24) 
 
where  𝑟𝑟𝑟𝑟𝑟𝑟 = [0.2 0 0.4]𝑇𝑇  Gauss is reference earth magnetic field,  𝑚𝑚 𝑡𝑡  is the 
magnetometer bias (constant or slowly varying), and  𝑚𝑚 𝑡𝑡  a Gaussian noise with distribution of 
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Noise and Bias Parameters: To reflect realistic sensor imperfections, the following 
parameters were adopted: 

 Gyroscope: 
 Noise ( 𝑔𝑔): 0.0035°/s/√Hz, Bias Instability: 10 /hr, Range: ±450 °/s. 

 Accelerometer: 
 Noise ( 𝑎𝑎): 50 µg/√Hz, Bias Instability: 20 µg Range: ±160 m/s². 

 Magnetometer: 
 Noise ( 𝑚𝑚): 0.15 mGauss/√Hz, Bias Vector: [0.002, -0.003, 0.001] 

Gauss, Range: ±2.5 Gauss. 
 

The process noise covariance Q = 3.73×10⁻⁹I₃ is derived from the gyroscope's angular 
random walk of  𝑔𝑔 = 0.0035°/s/√Hz, converted to 6.11×10⁻⁴ rad/s at 100 Hz sampling rate using 
the relation Q =  𝑔𝑔²Δt. The measurement noise covariance R = blkdiag (2.41×10⁻⁵I₃, 2.25×10⁻⁶I₃) 
incorporates the accelerometer velocity random walk of  𝑎𝑎 = 4.91×10⁻³ m/s² (from 50 µg/√Hz) 
and magnetometer noise of  𝑚𝑚  = 1.5×10⁻³ Gauss (from 0.15 mGauss/√Hz). The initial 
covariance P = 1.22×10⁻³I₃ corresponds to an initial attitude uncertainty of ±2° (1σ) in each 
Euler angle, reflecting typical static alignment accuracy with the XSENS MTi-G-710 
specifications. 
 
3.2 Results 
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where R(t) is the rotation matrix that transforms from the 

body frame to the world frame, g=[0 0 -9.81]T m/s2 is the 

gravity vector, ba(t) is the accelerometer bias (constant or 

slowly varying), and ηa(t) is the Gaussian noise following a 

normal distribution N(0,σg
2).

3) Magnetometer model:

If simulating an AHRS, the magnetometer measures:

𝜔̃𝜔 𝑡𝑡 = 𝜔𝜔 𝑡𝑡 +  𝑔𝑔 𝑡𝑡 +  𝑔𝑔 𝑡𝑡 , (22) 
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𝑎̃𝑎 𝑡𝑡 =  𝑇𝑇 𝑡𝑡  𝑔𝑔 +  𝑎𝑎 𝑡𝑡 +  𝑎𝑎 𝑡𝑡  , (23) 
 
where   𝑡𝑡  is the rotation matrix that transforms from the body frame to the world frame, 
g = [0 0 − . 1]𝑇𝑇  m/s2 is the gravity vector,  𝑎𝑎 𝑡𝑡  is the accelerometer bias (constant or 
slowly varying), and  𝑎𝑎 𝑡𝑡  is the Gaussian noise following a normal distribution   0, 𝑎𝑎  . 
 
3) Magnetometer model 
 

If simulating an AHRS, the magnetometer measures: 
 

 ̃ 𝑡𝑡 =  𝑇𝑇 𝑡𝑡  𝑟𝑟𝑟𝑟𝑟𝑟 +  𝑚𝑚 𝑡𝑡 +  𝑚𝑚 𝑡𝑡 , (24) 
 
where  𝑟𝑟𝑟𝑟𝑟𝑟 = [0.2 0 0.4]𝑇𝑇  Gauss is reference earth magnetic field,  𝑚𝑚 𝑡𝑡  is the 
magnetometer bias (constant or slowly varying), and  𝑚𝑚 𝑡𝑡  a Gaussian noise with distribution of 
  0, 𝑚𝑚  . 

Noise and Bias Parameters: To reflect realistic sensor imperfections, the following 
parameters were adopted: 

 Gyroscope: 
 Noise ( 𝑔𝑔): 0.0035°/s/√Hz, Bias Instability: 10 /hr, Range: ±450 °/s. 

 Accelerometer: 
 Noise ( 𝑎𝑎): 50 µg/√Hz, Bias Instability: 20 µg Range: ±160 m/s². 

 Magnetometer: 
 Noise ( 𝑚𝑚): 0.15 mGauss/√Hz, Bias Vector: [0.002, -0.003, 0.001] 

Gauss, Range: ±2.5 Gauss. 
 

The process noise covariance Q = 3.73×10⁻⁹I₃ is derived from the gyroscope's angular 
random walk of  𝑔𝑔 = 0.0035°/s/√Hz, converted to 6.11×10⁻⁴ rad/s at 100 Hz sampling rate using 
the relation Q =  𝑔𝑔²Δt. The measurement noise covariance R = blkdiag (2.41×10⁻⁵I₃, 2.25×10⁻⁶I₃) 
incorporates the accelerometer velocity random walk of  𝑎𝑎 = 4.91×10⁻³ m/s² (from 50 µg/√Hz) 
and magnetometer noise of  𝑚𝑚  = 1.5×10⁻³ Gauss (from 0.15 mGauss/√Hz). The initial 
covariance P = 1.22×10⁻³I₃ corresponds to an initial attitude uncertainty of ±2° (1σ) in each 
Euler angle, reflecting typical static alignment accuracy with the XSENS MTi-G-710 
specifications. 
 
3.2 Results 

(24)

where mref =[0.2 0 0.4]T Gauss is reference earth magnetic 

field, bm(t) is the magnetometer bias (constant or slowly 

varying), and ηm(t) a Gaussian noise with distribution of 

N(0,σ 2
m).

Noise and Bias Parameters: To reflect realistic sensor 

imperfections, the following parameters were adopted:

(a) Gyroscope

Noise (σg): 0.0035°/s/√Hz, Bias Instability: 10 /hr, 

Range: ±450°/s.

(b) Accelerometer

Noise (σa): 50 µg/√Hz, Bias Instability: 20 µg Range: 

±160 m/s².

(c) Magnetometer

Noise (σm): 0.15 mGauss/√Hz, Bias Vector: [0.002, 

-0.003, 0.001] Gauss, Range: ±2.5 Gauss.

The process noise covariance Q = 3.73×10-⁹I₃ is derived 

from the gyroscope's angular random walk of σg = 0.0035°/

s/√Hz, converted to 6.11×10-⁴ rad/s at 100 Hz sampling 

rate using the relation Q=σg²Δt .  The measurement 

noise covariance R = blkdiag (2.41×10-⁵I₃, 2.25×10-⁶I₃) 

incorporates the accelerometer velocity random walk of σa 

Fig. 1.  Synthetically generated trajectory and sensor data.
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Fig. 2.  Attitude estimation; (a) yaw, pitch, and roll estimation, (b) Covariance trace for yaw, pitch, and roll, (c) estimation error of yaw, pitch, and roll.

(a)

(b)

(c)
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= 4.91×10-³ m/s² (from 50 µg/√Hz) and magnetometer noise 

of σm = 1.5×10-³ Gauss (from 0.15 mGauss/√Hz). The initial 

covariance P = 1.22×10-³I₃ corresponds to an initial attitude 

uncertainty of ±2° (1σ) in each Euler angle, reflecting typical 

static alignment accuracy with the XSENS MTi-G-710 

specifications.

3.2 Results

This section presents a comprehensive evaluation of the 

proposed LGEKF for attitude estimation, and compares 

its performance with that of the conventional EKF using 

synthetic MARG sensor data. The results were analyzed 

using three key metrics: attitude estimation accuracy, 

covariance trace, and estimation error, as illustrated in Figs. 

2 and 3 and quantified in Table 2.

Fig. 2a compares the yaw, pitch, and roll estimation 

performances of the LGEKF and conventional EKF against 

the ground truth. Across all three axes, the LGEKF tracked 

the ground truth much more closely, maintaining small 

errors even during abrupt attitude changes and large 

rotation maneuvers. In yaw estimation, the LGEKF curve 

almost overlapped with the ground truth throughout the 

simulation, whereas the EKF exhibited significant deviations 

during high-dynamic periods. Similar trends were 

observed in the pitch and roll, where the EKF produced 

large overshoots and undershoots, especially during 

rapid orientation changes, whereas the LGEKF remained 

relatively stable. These results confirm that the geometry-

preserving SO(3) formulation of the LGEKF mitigates the 

drift and linearization errors, enabling robust performance 

under both slow and fast rotational dynamics.

Fig. 2b depicts the evolution of the covariance traces 

for all three attitude components, representing the 

internal uncertainty estimates of the filter. The LGEKF 

maintained consistently low covariance values close to zero 

throughout the simulation, with smooth, stable traces that 

demonstrated well-calibrated uncertainty quantification. 

For the yaw and pitch components, the LGEKF showed 

a nearly constant covariance near zero, whereas for the 

roll component, both the LGEKF and EKF exhibited 

gradual increases in covariance over time. However, the 

roll covariance of the LGEKF remains significantly lower 

than that of the EKF throughout the entire trajectory, 

demonstrating better uncertainty management. This 

stable covariance propagation indicates that the Lie group 

formulation preserves consistent confidence levels despite 

the dynamic motion.

Fig. 2c quantifies the absolute estimation errors for yaw, 

pitch, and roll, presenting the time histories of the attitude 

estimation errors for both the LGEKF and the conventional 

EKF. The LGEKF demonstrated superior performance 

across all three axes, maintaining significantly smaller error 

magnitudes than the EKF throughout the entire simulation. 

For pitch and roll  estimation, the LGEKF achieves 

exceptional accuracy with errors consistently near zero, 

demonstrating its ability to precisely track these critical 

attitude components. In contrast, the conventional EKF 

exhibited substantially larger error magnitudes and more 

pronounced oscillations. Overall, the figure underscores 

the capability of the LGEKF to provide a more accurate, 

stable, and reliable attitude estimation with a dramatically 

reduced error drift and fewer large deviations compared to 

the standard EKF formulation.

Table 2 and Fig. 3 demonstrate that the proposed 

LGEKF significantly outperforms the conventional EKF in 

terms of both the mean and RMS errors across all attitude 

components (yaw, pitch, and roll). For yaw estimation, the 

mean error decreased from 0.46° (EKF) to 0.36° (LGEKF), 

and the RMS error was reduced from 0.6° to 0.44°. Pitch 

estimation shows a similar improvement, with mean error 

Table 2.  Comparison of attitude estimation error.

Attitude
error (deg)

Yaw Pitch Roll
EKF LGEKF EKF LGEKF EKF LGEKF

MN
STD
Min
Max
RMS

0.4616
0.37703
-1.5859

0.054148
0.596

0.35485
0.26732
-0.97334
0.072937
0.44347

1.1749
0.63908

-3.7105e-10
2.1873
1.3374

0.0002942
0.0068367
-0.026141
0.022682

0.0068429

4.1671
4.0362
-11.227
3.7982
5.1531

0.0046262
0.0066115
-0.030834
0.022099

0.0080692

Fig. 3.  Estimation statistical error.
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decreasing from 1.18° to 0.0003°, and RMS error dropping 

from 1.34° to 0.007°. Roll estimation benefits even more, 

with mean error reducing from 4.17° to 0.005° and RMS 

error decreasing sharply from 5.15° to 0.008°. These RMS 

reductions indicate not only higher accuracy but also 

improved stability over time. Fig. 3 visually reinforces these 

results, showing consistently smaller bars for the LGEKF 

across all statistical metrics, indicating the enhanced 

stability, accuracy, and robustness of the proposed filter in 

attitude estimation.

The comparative analysis in Table 3 reveals a clear 

tradeoff between computational efficiency and estimation 

accuracy. The EKF demonstrates superior computational 

performance, operating 5.4 times faster than the LGEKF 

with a maximum update rate of 35.5 kHz, making it 

suitable for resource-constrained real-time applications. 

However, it exhibits significantly poorer attitude estimation 

accuracy, particularly in roll (4.17° error) and pitch (1.17° 

error), owing to Euler angle singularities and linearization 

limitations. In contrast, the LGEKF achieved exceptional 

estimation precision with sub-degree errors across all 

axes (0.56° RMSE) and near-perfect roll/pitch estimation 

(0.006-0.007° errors), leveraging its Lie group formulation 

to avoid singularity issues. While the LGEKF requires 

3.04 of processing time primarily due of expensive matrix 

exponential operations (59.5% of the computation), its 

8.8× improvement in overall accuracy and guaranteed 

group structure preservation make it a superior choice for 

applications demanding high-precision attitude estimation.

The computational performance reported in Table 

3 was measured on a desktop computer with hardware 

configuration featured an Intel(R) Core(TM) i7-10700F CPU 

@ 2.90 GHz and 16.0 GB of RAM. The simulations were 

conducted using MATLAB R2024b.

To establish clarity and reproducibility, the performance 

metrics in Table 3 are defined as follows:

• Singularity events: the number of instances in which 

the algorithm encountered a mathematical singularity, 

such as a gimbal lock. A value of zero indicates robust 

operation without singularities throughout the 

simulation.

• Robustness score: A qualitative score (0-10) evaluating 

the filter's resilience under challenging conditions, 

including aggressive maneuvers and sensor noise, 

where 10/10 indicates no observed divergence or 

catastrophic failure.

• Stability assessment: A qualitative evaluation based 

on covariance propagation behavior and error 

boundedness, where "enhanced" indicates stable, 

consistent performance and "limited" suggests 

potential over-confidence or error divergence.

• Group structure preservation: A binary metric indicating 

whether the estimated rotation matrix inherently remains 

on the SO(3) manifold, satisfying the constraints RT R=I 

and det(R)=+1 at all times.

4. CONCLUSIONS

This study introduced an LGEKF for attitude estimation 

formulated on the special orthogonal group SO(3) and 

demonstrated its advantages over conventional methods 

through rigorous testing using synthetic MARG sensor data. 

The proposed approach successfully addresses critical 

challenges in attitude estimation by preserving the geometric 

properties of rotations through an exponential map and 

Table 3.  General performance characteristics of EKF and LGEKF.

Metric EKF LGEKF Advantage
Computational performance
Total processing time
Iteration time
Max update rate

0.5636 sec
28 μs
35485 Hz

3.04 sec
152 μs
6,569 Hz

EKF (5.4× faster)
EKF (5.4× faster)
EKF (5.4× higher)

Accuracy & Error
Final RMSE
Mean roll error
Mean pitch error
Mean yaw error

4.91°
4.1671°
1.1749°
0.4652°

0.56°
0.007°
0.006°
0.36°

LGEKF (8.8× more accurate)
LGEKF (595× better)
LGEKF (195× better)
LGEKF (1.3× better)

Robustness & Stability
Singularity events
Robustness score
Group structure
Stability assessment

0
10.0/10
N/A
Limited

0
10.0/10

reserved
Enhanced

Both robust
Both perfect
LGEKF
LGEKF

Computational distribution
Prediction time
Update time
Exponential operations

6.8%
93.2%
N/A

37.0%
63.0%
59.5%

EKF (lighter prediction)
Balanced
EKF (no exponentials)
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eliminating the singularities and normalization issues 

inherent in the Euler angle and quaternion representations.

The simulation results clearly demonstrate the superior 

performance of the LGEKF compared to the standard EKF. 

The proposed method maintains a higher accuracy with 

sub-degree RMS errors across all attitude angles, even 

during aggressive maneuvers, where traditional approaches 

typically degrade. Furthermore, the LGEKF exhibits a 

more stable covariance propagation, reflecting its ability 

to properly account for uncertainty under high-dynamic 

conditions. This robust performance stems from the filter 

foundation of Lie’s group theory, which ensures geometric 

consistency throughout the estimation process.

Several promising directions have emerged for extending 

this study. It is important to note that this study validated the 

filter under the assumption of negligible non-gravitational 

acceleration; therefore, a key future direction involves 

extending the LGEKF to explicitly model and compensate 

for motion-induced acceleration. Future research should 

investigate the performance of the filter with real sensor 

data and explore its integration with complementary 

navigation systems to enhance its robustness in challenging 

environments. Additional improvements could focus 

on adaptive tuning mechanisms and bias compensation 

techniques to further increase reliability. The mathematical 

rigor and computational efficiency of the LGEKF make 

it particularly suitable for implementation in resource-

constrained autonomous systems, suggesting its broad 

applicability across aerospace, marine, and robotic 

applications.
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