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ABSTRACT

This study evaluates the performance of Global Navigation Satellites System, Reflectometry (GNSS-R)-based tide estimation

techniques in coastal environments such as the Korean coastline, where the spatial and temporal variability of the sea level

is large. GNSS-R estimates sea surface heights by analyzing multipath interference patterns in the signal-to-noise ratio (SNR)

of GNSS signals. To enable the retrieval of sea level estimates with higher spatial and temporal resolution, several signal

processing methods were applied, including a time-dependent phase model, optimal sliding-window spectral analysis, and
multi-frequency consistency checking. The methods were tested at two coastal GNSS stations in the United States: CALC in
Louisiana, which experienced Hurricane Harvey in 2017, and ATO01 in Alaska, which was affected by a storm surge in 2019.
GNSS-R-derived sea level estimates were compared with tide gauge observations at each site. At CALC, correlation coefficients

reached 0.99 during the full period and 0.97 during the hurricane, with mean differences of 2.7 cm and 3.7 cm, respectively.

At ATO01, correlations were 0.96 and 0.87, with larger mean differences due to the spatial offset from the reference gauge. The

results demonstrate that GNSS-R can effectively monitor tidal changes even during extreme weather conditions and can serve

as a practical complement to traditional tide gauges. For implementation in Korea, further in-situ validation to account for

local tidal characteristics, infrastructure compatibility, and vertical datum alignment should be performed.

Keywords: GNSS-reflectometry (GNSS—R), tide estimation, multipath interference, signal—to—noise ratio (SNR),

storm surge monitoring
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2. INTERFERENCE ANALYSIS OF GNSS
REFLECTED SIGNALS FOR TIDE LEVEL
ESTIMATION

2.1 Interference Effects in GNSS Observables
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2.2 SNR Interference Modeling and Reflector Height
Estimation
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Fig. 1. Geometric configuration of direct and reflected GNSS signal paths
for reflector height estimation (Kim & Park 2019).
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3.2 Determination of Optimal Sliding Window for
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3.3 Multipath Frequency Correction via Multi-
Frequency Height Consistency Check
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Fig. 2. Flowchart of the multi-frequency consistency check algorithm for
multipath frequency correction.
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Fig. 3. Example of multipath frequency correction performed using the
algorithm described in Fig. 2.
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4. EXPERIMENTAL EVALUATION OF
TIDE LEVEL RETRIEVAL FROM GNSS
REFLECTED SIGNALS
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4.1 Experimental Sites and Data Overview
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Fig. 4. Photos of GNSS-R experimental stations installed at coastal sites
with open visibility to the sea surface: (left) CALC station in Louisiana, (right)
ATO1 station in Alaska.
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Fig. 5. Map showing the location of the ATO1 station and two nearby
tide gauges: St. Michael (1.5 km, not used due to unavailable data) and
Unalakleet (74 km, used for validation).
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4.2 Tide Estimation and Validation Results
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Fig. 6. Time series of GNSS-R-derived sea surface heights and tide gauge
observations used for validation (co-located at CALC; 74 km distant at
ATO01). Red boxes highlight the event periods: Hurricane Harvey at CALC
(top), storm surge at ATO1 (bottom).

Fig. 7. Correlation analysis between GNSS-R-derived sea surface heights
from the CALC station and tide gauge observations from the same NWLON
sentinel station: (left) full analysis period, (right) event period during
Hurricane Harvey.

Fig. 8. Correlation analysis between GNSS-R-derived sea surface heights
at ATO1 and tide gauge observations from Unalakleet (74 km away). The
plot includes both the full analysis period and the storm event period,
distinguished by color.
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5. SUMMARY AND CONCLUSION
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