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ABSTRACT

This paper presents the design and implementation of a multi-constellation Global Navigation Satellite System (GNSS) spoofer
utilizing a multicore Asymmetric Multi-Processing (AMP) architecture based on the Zynq UltraScale+ RFSoC platform. The
proposed system can simultaneously generate L1 band signals for GPS, GLONASS, and BeiDou and manipulate the target
receiver's position solution in real time. For system implementation, three cores of the Cortex-A53 quad-core processor were
operated in independent real-time OS environments, with each core performing signal generation parameter calculations for
different constellations. The calculated parameters are shared through on-chip memory (OCM) and transferred to the signal
generator in the programmable logic (PL) region for real-time GNSS signal synthesis. To achieve precise time synchronization
between authentic GNSS signals and spoofing signals, the system delay time was measured and calibrated. The calibration
results confirmed a time synchronization accuracy of 0.03 chips (approximately 30 ns) based on C/A code. Spoofing tests were
conducted on a commercial GNSS receiver, the Septentrio SB3 Pro+. The results confirmed that the target receiver could be
successfully spoofed to manipulate its position solution along an intended trajectory even in an environment where authentic
GNSS signals and spoofing signals coexist.
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1. ME Ry % 719k Aol uf-e- Hekstnd, /N E L2 EZ} o
AA] 22 A|ARY AT} Fad0] B2 g3ks nA
Global Navigation Satellite System (GNSS)2] ¥z o 2 2la) O‘E]- (Warner & Johnston 2003, Humphreys et al. 2008). &
AAA oAU 8 91X] B He} Felgh A|7hs &4 &5 5| GNSS 4155 BHlelA] AAdohs 719k 342 ¢ 41717
4 QA HQIok GNSS& =2 Aol A Hdolgke 25 RIS AdstA stAY A7 A RS XAk Aol 7t
AR AU Glo] BE, e, 59 5 e Bololld 9 B sleh ol GNSSE Juke. sl AARe) A=l £
257 ok (Rumsfeld 2001, John 2001). 181} o]ZA| 31t of] Y¥o] Tui, A4 Unmanned Aerial Vehicle (UAV)L &
o1§ 5T A5 FX} e AEHAL GNSSO] WA o T Ak SolA A2 EAIS LA 4 9k Gohn 2001
o] &7|% 3t} Warner & Johnston 2003, Humphreys et al. 2008).
GNSS A13& fA7I7) pAlshs I ollA] &7 Aut 7Hd o] ol2igk GNSS9] 22 o d2 Y2 HAYe] i 7|& &
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Epa KL @Xﬂi 201 1%15 129de] v
SALE 7 2 Qs gy
Sk A E P32EL7L lot (Shepard et al. 20123), o]Z Algo}
WA (C4ADS 2019)3} #AJo}-o-Fetolut AR (Lo et al. 2025)
I 22 B oA E GNSS 7|RE7) & 2-gstel A E29] 9
A& AESAY AR E FER FETOEZH AR S Al
AskAL Beslebs Azl B E T ok B3 2ujoAE
Slko] Asjo 2 HThElE= GNSS 7|9 2 QI8 a7 2 A
ghe] YA BT A== AR It (Goward 2024). ©]€]
o= GNSS 7RIS & Q13 F5fl= | &H 02 W ok
(Scott 2017, Jones 2017).

o]X ¥ GNSS 7|Fto] AxolA] Fg5= Alel7h BasEwA,
012 7H53hAl sH= FHlQl GNSS 7|Th]ol] that 77} wol
Z| a1 @it} (Psiaki & Humphreys 2016). GNSS 7|97 = 22 &
A 171014 Holi= GNSS $l4e] A58 FeUshl ke 91z
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et al. 2014).
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Fig. 1. Delay time components for time synchronization of GNSS spoofing
signal.
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Fig. 2. Block diagram of multi-constellation GNSS spoofer system using multicore AMP structure.
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2.2 Zynq UltraScale+ RFSoCE 0|23t Multi-
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719 35BS A 4 1k oIPfT 25k 715 E Al

(Park et al. 2024).
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Fig. 3. Memory map of available memory regions in multi-constellation
GNSS spoofer.
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Fig. 4. GNSS signal generator structure in PL region.

Table 1. IF and NCO frequencies for multi-constellation GNSS signal
generation.

Constellation IF (MHz) NCO (GHz)
GPS 75.42 1.5
GLONASS 75 1.527
BeiDou 75.098 1.486
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Fig. 5. Signal spectrum results of multi-constellation GNSS spoofer (a)
center frequency: 1575.42 MHz, frequency span: 100 MHz (b) center
frequency: 1575.42 MHz, frequency span: 7 MHz (c) center frequency:
1602 MHz, frequency span: 10 MHz (d) center frequency: 1561.098 MHz,
frequency span: 7 MHz.

Table 2. FPGA resource utilization for multi-constellation GNSS spoofing
system.

Resource Available Utilization
LUT 4525280 133226 (31.33%)
FF 850560 166518 (19.58%)
BRAM 1080 433.5 (40.14%)
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Fig. 6. System delay time measurement results (a) GPS PRN 11 satellite
showing approximately 2 chip delay (b) GPS PRN 21 satellite showing
approximately 2 chip delay (c) GLONASS channel number 5 satellite
showing approximately 1.1 chip delay (d) BeiDou PRN 16 satellite showing
approximately 2.4 chip delay.
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Fig. 7. 1PPS time synchronization measurement results showing 30.268 ns
offset between authentic GNSS and spoofing signals.

Fig. 8. Experimental setup for multi-constellation GNSS spoofing
performance verification.
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Fig. 9. Measured C/N, of multi-constellation GNSS spoofing signal. (a) GPS
C/N,, (b) GLONASS C/N,, (c) BeiDou C/N,.
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Fig. 10. Static scenario: position manipulation commands and target
receiver position result (a) planimetric plot from Septentrio application (b)
spoofing position setting in spoofing control application.

Fig. 11. Signal strength changes measured by commercial receiver during
spoofing interval.
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Fig. 12. Dynamic scenario: trajectory manipulation commands and target
receiver position result changes (a) planimetric plot from Septentrio
application (b) spoofing position setting in spoofing control application.
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