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1. 서론

대표적인 광학식 자이로인 링레이저 자이로는 반사경의 후

방산란에 의해 작은 크기의 외부 인가 각속도가 측정되지 않

는 영역이 존재하게 되며, 이를 락인(lock-in) 영역이라고 한다 

(Siouris 1993, Aronowitz 1999). 이러한 락인 문제를 해결하는 대

표적인 방법은 큰 정현파 진동을 자이로 몸체에 인가하여 외부에

서 인가된 각속도가 락인 영역에 머무르는 시간을 최소화하는 것
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ABSTRACT

The ring laser gyro, a representative optical gyro, has an area where small angular velocity inputs are not measured due to 

backscattering of the reflector. This area, referred to as a lock-in, is typically removed by applying a very large sinusoidal 

vibration to the gyro body. A mechanical device that applies sinusoidal vibration to the gyro body is called a dither. Dithers 

have various shapes depending on the gyro size, and when the gyro optical path is relatively large, a single-axis dither is 

applied. In the case of a single-axis dither, it is located at the center of the gyro body, but if the optical path of the gyro is small, 

a cluster dither that simultaneously applies sinusoidal vibration to the 3-axis gyro should be used. In the cluster dither, unlike 

the single-axis dither, a gyro body tilted at a certain angle is mounted on the spoke of the dither, and the gyro mounting part 

for mounting the gyro is attached at the end of the spoke. In addition, the dither fixing hole is located in the center of the 

gyro body in the case of single-axis dither, whereas is located on the outside of the dither in the case of the cluster dither. 

Therefore, unlike the single-axis dither, the rotation center of the cluster dither does not coincide with the center of the gyro 

body, but rather is located at the center of the cluster dither. Depending on the shape of the cluster dither, the dither natural 

frequency varies and a different dither frequency analysis method must be applied. In this paper, we analyze natural frequency 

characteristics according to the shape of a cluster dither and present the results. We also verify the results through modeling 

and simulation.
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이다. 디더(dither)에서 인가된 정현파 진동은 자이로 출력을 디

더 주기마다 적분하면 제거되므로 이러한 방법을 적용하여 외부 

인가 각속도를 측정하게 된다. 이와 같이 자이로 몸체에 정현파 

진동을 인가하는 기계적인 장치를 디더라고 하며, 링레이저 자이

로의 크기에 따라 다양한 형태의 디더가 구현될 수 있다 (Siouris 

1993, Aronowitz 1999). 디더를 이용하여 자이로 몸체에 정현

파 진동을 인가하는 방법은, 디더에 부착된 Pb-lead Zironcate 

Titanate (PZT)에 디더 고유 주파수에 해당하는 전압을 주기적으
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로 인가하여 디더 구조물에 굽힘 모멘트(bending moment)를 발

생시키는 것이다. 따라서 디더의 주요 설계 요소는 디더 고유 주

파수 및 디더 진폭이 된다. 락인 영역에 머무는 시간을 최소화하

여 링레이저 자이로의 랜더워크 성능을 향상시키기 위해서는 디

더의 각속도를 증가시켜야 하며, 동일 진폭에서 디더의 각속도를 

증가시키는 방법으로 디더의 고유 주파수를 증가시키는 방법이 

있다 (Aronowitz 1999). 따라서 링레이저 자이로의 락인 영역이 

커지면 이에 맞게 디더의 고유 주파수를 증가시켜야 한다. 일반

적으로 광경로 28 cm급 링레이저 자이로의 경우 약 400 Hz, 광경

로 16 cm급 링레이저 자이로의 경우 약 600 Hz의 단축 디더 고유 

주파수를 가지는 것으로 알려져 있으며 링레이저 자이로의 광경

로가 작아질수록 락인 영역이 커지기 때문에 디더의 고유 주파수

는 커져야 한다 (Siouris 1993).

일반적으로 1축 디더는 링레이저 자이로 몸체의 중심부에 장

착되며, 디더 스포크(spoke)의 끝단에 고정된 자이로 몸체에 정

현파 진동이 인가되도록 제작된다. 따라서 1축 디더는 외팔보

(clamped-free cantilever)로 모델링 가능하며, 이에 대한 설계 및 

분석에 대한 많은 연구가 있었다 (Li 2013, Yu et al. 2013, Xiong 

et al. 2016, Lee et al. 2002, 2009). 이러한 1축 디더를 링레이저 

자이로 3개가 탑재되는 관성측정장치(inertial measurement unit)

에 적용할 경우, 3개의 서로 다른 고유 주파수를 가지는 3개의 디

더가 축별로 필요하게 된다 (Siouris 1993). 링레이저 자이로에 적

용되는 1축 디더는 링레이저 자이로의 광경로가 어느 정도 큰 경

우에 일반적으로 사용되며, 링레이저 자이로의 광경로가 작아지

는 경우에는 디더 장착에 허용되는 면적이 협소하여 디더 설계 

및 제작에 어려움이 따른다. 이를 극복하기 위하여 3축의 자이로 

몸체에 기계적 진동을 동시에 인가할 수 있는 단일 디더가 제안

되었다 (Hanse 1992). 제안된 단일 디더는 링레이저 자이로 기반 

관성측정장치 소형화 설계에 필수적이다. 그러나, 형상만 제안되

었지 단일 디더 설계 및 분석에 대한 연구가 진행된 사례는 없었

다. 이 논문에서는 링레이저 자이로 기반 관성측정장치에 적용 

가능한 단일 디더의 설계 및 형상에 따른 고유 주파수 해석 결과

를 제시한다. 앞에서 언급한 바와 같이 단일 디더 고유 주파수는 

링레이저 자이로 락인 영역의 크기와 관계가 있기 때문에, 단일 

디더의 고유 주파수 설계 요구 규격인 800 Hz를 만족하는 설계와 

형상에 따른 고유 주파수 해석 결과를 제시한다.

단일 디더는 3개의 링레이저 자이로가 장착되어야 하기 때문

에 3개의 디더 스포크가 디더 중심에서 상호 지지하며, 120도 간

격으로 하우징에 장착되도록 설계되었다. 단일 디더의 회전축은 

디더 중심에 위치하며, 3개의 링레이저 자이로는 3개의 스포크 

사이 공간에 디더 회전축 방향으로 120도 간격으로 회전축과 64

도 기울여져 장착된다. 단일 디더의 스포크 한쪽 끝은 디더 회전 

중심에서 자이로 장착부와 연결되며, 다른 쪽 끝은 관성측정장

치 하우징에 고정된다. 따라서, 1축 디더와는 다르게 지지 외팔보

(clamped-supported cantilever)로 모델링이 가능하다. 이와 같

이 디더의 형상에 따라 모델링이 달라지므로, 형상에 맞도록 고

유 주파수를 해석하는 방법이 달리 적용되어야 한다. 이 논문에

서는 지지 외팔보 모델을 이용한 단일 디더 설계 결과를 제시하

고, Solidworks를 이용한 M&S 결과와 비교 분석하였다. 또한 단

일 디더를 실제 제작하여 평가한 결과를 설계 값과 비교하였다.

2. 외팔보 운동 방정식

2.1 외팔보 운동 방정식 유도

일반적인 1축 디더는 Fig. 1과 같다. Fig. 1에서 디더는 3개의 홀

을 이용하여 링레이저 자이로 하우징에 고정되며, 디더 스포크에 

링레이저 자이로 몸체가 고정되도록 제작된다. 그러므로 디더 스

포크에 부착된 PZT에 전압을 인가하면 자이로 몸체가 정현파 진

동을 하게 된다. 이러한 원리로 디더가 동작되므로 디더 스포크

를 Fig. 2와 같은 외팔보(cantilever beam)로 모델링이 가능하다. 

외팔보의 횡변위(transverse deflection) 운동 방정식은 Eq. (1)과 

같다 (Timoshenko et al. 1974, Lee et al. 2002, Rao 2004).

Eq. (1)에서 E는 외팔보의 영률(Young's modulus), I는 관성 모

멘트(moment of inertia), ρ는 밀도, A는 단면적이며, p(x,t)는 외

부에서 인가되는 힘이다. 그러나 외팔보의 고유 주파수는 외부에

서 인가되는 힘과 무관하므로 Eq. (1)에서 p(x,t)는 영이라 가정할 

수 있다. Eq. (1)에서 외팔보가 고유 주파수를 가지고 일정 진폭

으로 진동한다고 가정하면, 횡변위 y(x, t)는 Eq. (2)와 같다. Eqs. 

(1, 2)에 변수 분리법을 적용하여 x에 대한 특성 방정식을 구하면 

Eq. (3)과 같다. Eq. (3)에서 λ는 Eq. (4)와 같고, Eq. (4)에 대한 일

반해를 구하면 Eq. (5)와 같다. Eq. (5)의 일반해에 대한 계수를 구

하기 위해서는 외팔보의 경계조건이 요구되며, 이를 식으로 나

타내면 Eqs. (6a, b)와 같다. Eqs. (6a, b)의 외팔보 경계조건은 외

팔보가 고정된 x=0 지점에서, 횡변위 및 횡변위 기울기(slope)

는 각각 0이며, 외팔보의 끝단인 x=L 지점에서, 횡변위 모멘트

(bending moment)와 전단력(shear force) 또한 각각 0임을 의미

한다 (Timoshenko et al. 1974, Lee et al. 2002, Rao 2004). Eq. (5)

에서, x=0에서의 외팔보 경계조건인 Eq. (6a)에 대하여 방정식을 

구하면 Eq. (7)이 계산되며, Eq. (7)을 모두 만족하는 계수를 구하

여 Eq. (5)에 대입하면 Eq. (8)과 같다. Eq. (8)에서 x=L에서의 외

팔보 경계조건인 Eq. (6b)를 적용하여 정리하면 Eq. (9)가 계산되

며, Eq. (9)의 행렬식(determinant)이 영이 되는 λL을 구하면 Eq. 

(10)과 같다. Eq. (10)을 만족하는 λL은 주기적인 해를 가지는 것으

Fig. 1.  The picture of typical one-axis dither.

Fig. 2.  The configuration of cantilever beam.
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구조물에 대한 고유 주파수 해석을 통하여 단일 디더 전체의 고

유 주파수를 구할 수 있다. 이를 위하여 1개 스포크 끝단의 자이로 

장착부 및 자이로의 세부 모델링을 수행하면 Figs. 6, 7과 같다.

Figs. 6과 7의 디더 스포크 끝단에 부착된 물체로 단일 디더 고

유 주파수 해석을 수행하기 위해서는 Eqs. (15-18)에서 요구되는 

계수의 계산이 필요하다. 우선 M1 모델에 대한 무게(ma1)와 관성 

모멘트(Jzz1)를 구하면 Eqs. (27, 28)과 같고, M2 모델에 대한 무게

와 관성 모멘트 구하면 Eqs. (29, 30)과 같다. M3 모델은 링레이저 

자이로에 해당하며, 디더와는 다른 재질로 제작된다. 링레이저 

자이로는 육면체의 모양이나 외곽에 많은 광학 부품들이 부착되

어 있고, 링레이저 자이로를 장착부에 고정하는 볼트(mb)를 포함

한 무게는 Eq. (31)과 같다. 링레이저 자이로의 관성 모멘트는 링

레이저 자이로를 육면체로 가정하여 축별 관성 모멘트를 구한 다

음, z축 방향으로 ψ, y축 방향으로 θ 각만큼 회전시킨 관성 모멘

트를 Eq. (19)를 이용하여 구하면 Eq. (32)와 같다. Eqs. (16, 17)을 

구성하는 계수인 M, Jzz는 Figs. 6과 7의 구성품 M1, M2 및 M3 모델 

각각의 모멘트 및 무게의 합으로 정리하면 Eq. (33)과 같다.
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Fig. 5에서 디더 스포크의 상세 설계 결과를 그림으로 나타내면 Fig. 8과 같다. 

그림에서 나타난 바와 같이 디더 스포크는 디더의 고유 주파수를 증가시키기 위해 

테이퍼짂 형상이며, 서로 다른 재질로 제작된 구성품이 결합된 형태이므로 외팔보의 고유 

주파수 계산에 필요핚 계수인 영률(E) 및 곾성 모멘트(I)를 구하기 위핚 새로운 방법이 

요구된다. 이종 물질이 결합되고 형상이 일정핚 경우, 등가 E는 Eq. (34)와 같이 계산이 

가능하다. Eq. (34)에서 Eb는 외팔보의 영률, Ep는 PZT의 영률이며, tp는 PZT의 두께, tb는 

외팔보의 두께를 나타낸다. 또핚 Ib, Ip는 L3~L4 구갂에서의 외팔보 및 PZT의 곾성 

모멘트를, It는 L3~L4 구갂에서의 젂체 곾성 모멘트를 의미핚다. 이를 수식으로 나타내면 

Eq. (35)와 같다. Eqs. (34, 35)를 이용하여 L3~L4 구갂에서의 등가 영률을 구하면 Eq. (36)과 

같다. 따라서 Fig. 8의 외팔보 젂체에 대핚 구갂별 영률이 구해짂다. 그러나 외팔보의 곾성 

모멘트 I는 외팔보가 Fig. 8과 같이 구갂마다 형상이 다르기 때문에 새로운 등가 I를 

계산하는 방법이 요구된다. 이 논문에서는 에너지 등가 법을 이용하여 외팔보 젂체의 등가 

EI (flexural rigidity)를 계산하는 방법을 제시핚다 (Rao 2004). 이를 위해서는 먼저 Fig. 8의 

외팔보 구갂별 두께 및 무게가 요구되며 이를 정리하면 Table 2와 같다. Table 2에서 h는 

외팔보의 깊이를 의미하며, ρb, ρp는 각각 외팔보 및 PZT의 밀도를 나타낸다. Table 2에서 

정리된 외팔보의 두께와 깊이 정보를 알면 Eq. (37)을 이용하여 각 구갂별 곾성 모멘트 

계산이 가능하다. 
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Fig. 5에서 디더 스포크의 상세 설계 결과를 그림으로 나타내면 Fig. 8과 같다. 

그림에서 나타난 바와 같이 디더 스포크는 디더의 고유 주파수를 증가시키기 위해 

테이퍼짂 형상이며, 서로 다른 재질로 제작된 구성품이 결합된 형태이므로 외팔보의 고유 

주파수 계산에 필요핚 계수인 영률(E) 및 곾성 모멘트(I)를 구하기 위핚 새로운 방법이 

요구된다. 이종 물질이 결합되고 형상이 일정핚 경우, 등가 E는 Eq. (34)와 같이 계산이 

가능하다. Eq. (34)에서 Eb는 외팔보의 영률, Ep는 PZT의 영률이며, tp는 PZT의 두께, tb는 

외팔보의 두께를 나타낸다. 또핚 Ib, Ip는 L3~L4 구갂에서의 외팔보 및 PZT의 곾성 

모멘트를, It는 L3~L4 구갂에서의 젂체 곾성 모멘트를 의미핚다. 이를 수식으로 나타내면 

Eq. (35)와 같다. Eqs. (34, 35)를 이용하여 L3~L4 구갂에서의 등가 영률을 구하면 Eq. (36)과 

같다. 따라서 Fig. 8의 외팔보 젂체에 대핚 구갂별 영률이 구해짂다. 그러나 외팔보의 곾성 

모멘트 I는 외팔보가 Fig. 8과 같이 구갂마다 형상이 다르기 때문에 새로운 등가 I를 

계산하는 방법이 요구된다. 이 논문에서는 에너지 등가 법을 이용하여 외팔보 젂체의 등가 

EI (flexural rigidity)를 계산하는 방법을 제시핚다 (Rao 2004). 이를 위해서는 먼저 Fig. 8의 

외팔보 구갂별 두께 및 무게가 요구되며 이를 정리하면 Table 2와 같다. Table 2에서 h는 

외팔보의 깊이를 의미하며, ρb, ρp는 각각 외팔보 및 PZT의 밀도를 나타낸다. Table 2에서 

정리된 외팔보의 두께와 깊이 정보를 알면 Eq. (37)을 이용하여 각 구갂별 곾성 모멘트 
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Fig. 5에서 디더 스포크의 상세 설계 결과를 그림으로 나타내면 Fig. 8과 같다. 

그림에서 나타난 바와 같이 디더 스포크는 디더의 고유 주파수를 증가시키기 위해 

테이퍼짂 형상이며, 서로 다른 재질로 제작된 구성품이 결합된 형태이므로 외팔보의 고유 

주파수 계산에 필요핚 계수인 영률(E) 및 곾성 모멘트(I)를 구하기 위핚 새로운 방법이 

요구된다. 이종 물질이 결합되고 형상이 일정핚 경우, 등가 E는 Eq. (34)와 같이 계산이 

가능하다. Eq. (34)에서 Eb는 외팔보의 영률, Ep는 PZT의 영률이며, tp는 PZT의 두께, tb는 

외팔보의 두께를 나타낸다. 또핚 Ib, Ip는 L3~L4 구갂에서의 외팔보 및 PZT의 곾성 

모멘트를, It는 L3~L4 구갂에서의 젂체 곾성 모멘트를 의미핚다. 이를 수식으로 나타내면 

Eq. (35)와 같다. Eqs. (34, 35)를 이용하여 L3~L4 구갂에서의 등가 영률을 구하면 Eq. (36)과 

같다. 따라서 Fig. 8의 외팔보 젂체에 대핚 구갂별 영률이 구해짂다. 그러나 외팔보의 곾성 

모멘트 I는 외팔보가 Fig. 8과 같이 구갂마다 형상이 다르기 때문에 새로운 등가 I를 

계산하는 방법이 요구된다. 이 논문에서는 에너지 등가 법을 이용하여 외팔보 젂체의 등가 

EI (flexural rigidity)를 계산하는 방법을 제시핚다 (Rao 2004). 이를 위해서는 먼저 Fig. 8의 

외팔보 구갂별 두께 및 무게가 요구되며 이를 정리하면 Table 2와 같다. Table 2에서 h는 

외팔보의 깊이를 의미하며, ρb, ρp는 각각 외팔보 및 PZT의 밀도를 나타낸다. Table 2에서 

정리된 외팔보의 두께와 깊이 정보를 알면 Eq. (37)을 이용하여 각 구갂별 곾성 모멘트 

계산이 가능하다. 
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Fig. 5에서 디더 스포크의 상세 설계 결과를 그림으로 나타내면 Fig. 8과 같다. 

그림에서 나타난 바와 같이 디더 스포크는 디더의 고유 주파수를 증가시키기 위해 

테이퍼짂 형상이며, 서로 다른 재질로 제작된 구성품이 결합된 형태이므로 외팔보의 고유 

주파수 계산에 필요핚 계수인 영률(E) 및 곾성 모멘트(I)를 구하기 위핚 새로운 방법이 

요구된다. 이종 물질이 결합되고 형상이 일정핚 경우, 등가 E는 Eq. (34)와 같이 계산이 

가능하다. Eq. (34)에서 Eb는 외팔보의 영률, Ep는 PZT의 영률이며, tp는 PZT의 두께, tb는 

외팔보의 두께를 나타낸다. 또핚 Ib, Ip는 L3~L4 구갂에서의 외팔보 및 PZT의 곾성 

모멘트를, It는 L3~L4 구갂에서의 젂체 곾성 모멘트를 의미핚다. 이를 수식으로 나타내면 

Eq. (35)와 같다. Eqs. (34, 35)를 이용하여 L3~L4 구갂에서의 등가 영률을 구하면 Eq. (36)과 

같다. 따라서 Fig. 8의 외팔보 젂체에 대핚 구갂별 영률이 구해짂다. 그러나 외팔보의 곾성 

모멘트 I는 외팔보가 Fig. 8과 같이 구갂마다 형상이 다르기 때문에 새로운 등가 I를 

계산하는 방법이 요구된다. 이 논문에서는 에너지 등가 법을 이용하여 외팔보 젂체의 등가 

EI (flexural rigidity)를 계산하는 방법을 제시핚다 (Rao 2004). 이를 위해서는 먼저 Fig. 8의 

외팔보 구갂별 두께 및 무게가 요구되며 이를 정리하면 Table 2와 같다. Table 2에서 h는 

외팔보의 깊이를 의미하며, ρb, ρp는 각각 외팔보 및 PZT의 밀도를 나타낸다. Table 2에서 

정리된 외팔보의 두께와 깊이 정보를 알면 Eq. (37)을 이용하여 각 구갂별 곾성 모멘트 

계산이 가능하다. 
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Fig. 5에서 디더 스포크의 상세 설계 결과를 그림으로 나타내면 Fig. 8과 같다. 

그림에서 나타난 바와 같이 디더 스포크는 디더의 고유 주파수를 증가시키기 위해 

테이퍼짂 형상이며, 서로 다른 재질로 제작된 구성품이 결합된 형태이므로 외팔보의 고유 

주파수 계산에 필요핚 계수인 영률(E) 및 곾성 모멘트(I)를 구하기 위핚 새로운 방법이 

요구된다. 이종 물질이 결합되고 형상이 일정핚 경우, 등가 E는 Eq. (34)와 같이 계산이 

가능하다. Eq. (34)에서 Eb는 외팔보의 영률, Ep는 PZT의 영률이며, tp는 PZT의 두께, tb는 

외팔보의 두께를 나타낸다. 또핚 Ib, Ip는 L3~L4 구갂에서의 외팔보 및 PZT의 곾성 

모멘트를, It는 L3~L4 구갂에서의 젂체 곾성 모멘트를 의미핚다. 이를 수식으로 나타내면 

Eq. (35)와 같다. Eqs. (34, 35)를 이용하여 L3~L4 구갂에서의 등가 영률을 구하면 Eq. (36)과 

같다. 따라서 Fig. 8의 외팔보 젂체에 대핚 구갂별 영률이 구해짂다. 그러나 외팔보의 곾성 

모멘트 I는 외팔보가 Fig. 8과 같이 구갂마다 형상이 다르기 때문에 새로운 등가 I를 

계산하는 방법이 요구된다. 이 논문에서는 에너지 등가 법을 이용하여 외팔보 젂체의 등가 

EI (flexural rigidity)를 계산하는 방법을 제시핚다 (Rao 2004). 이를 위해서는 먼저 Fig. 8의 

외팔보 구갂별 두께 및 무게가 요구되며 이를 정리하면 Table 2와 같다. Table 2에서 h는 

외팔보의 깊이를 의미하며, ρb, ρp는 각각 외팔보 및 PZT의 밀도를 나타낸다. Table 2에서 

정리된 외팔보의 두께와 깊이 정보를 알면 Eq. (37)을 이용하여 각 구갂별 곾성 모멘트 

계산이 가능하다. 
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Fig. 5에서 디더 스포크의 상세 설계 결과를 그림으로 나타내면 Fig. 8과 같다. 

그림에서 나타난 바와 같이 디더 스포크는 디더의 고유 주파수를 증가시키기 위해 

테이퍼짂 형상이며, 서로 다른 재질로 제작된 구성품이 결합된 형태이므로 외팔보의 고유 

주파수 계산에 필요핚 계수인 영률(E) 및 곾성 모멘트(I)를 구하기 위핚 새로운 방법이 

요구된다. 이종 물질이 결합되고 형상이 일정핚 경우, 등가 E는 Eq. (34)와 같이 계산이 

가능하다. Eq. (34)에서 Eb는 외팔보의 영률, Ep는 PZT의 영률이며, tp는 PZT의 두께, tb는 

외팔보의 두께를 나타낸다. 또핚 Ib, Ip는 L3~L4 구갂에서의 외팔보 및 PZT의 곾성 

모멘트를, It는 L3~L4 구갂에서의 젂체 곾성 모멘트를 의미핚다. 이를 수식으로 나타내면 

Eq. (35)와 같다. Eqs. (34, 35)를 이용하여 L3~L4 구갂에서의 등가 영률을 구하면 Eq. (36)과 

같다. 따라서 Fig. 8의 외팔보 젂체에 대핚 구갂별 영률이 구해짂다. 그러나 외팔보의 곾성 
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Fig. 6.  The 1-axis top view of cluster dither. Fig. 7.  The 1-axis side view of mounting part & RLG in a cluster dither.

Fig. 8.  The top view of dither spoke in a cluster dither.

Table 2.  Equations related to dither spoke.

Length of cantilever Thickness Mass
0 ≤ x ≤ L1 t1(x)=tf ms1=ρbtf +hL1

L1 ≤ x ≤ L2 t2(x)=tf + 
L2-L1

tb-tf (x-L) ms2=tf + 
2

ρb(tf+tb)h(L2-L1)

L2 ≤ x ≤ L3 t3(x)=tb ms4=(ρbtb+2ρptp)h(L4-L3)
L3 ≤ x ≤ L4 t4(x)=tb+2tp ms4=(ρbtb+2ρptp)h(L4-L3)
L4 ≤ x ≤ L1 t5(x)=tb ms4=ρbtbh(L2-L1)
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의 외팔보의 등가 EI가 계산된다. Eq. (4)에서 Y(x)는 변위 함수로 

일반해는 Eqs. (5, 8)과 같으나 계산의 어려움으로 일반적으로 외

팔보의 경계조건을 만족하는 다항식 형태로 Y(x)를 모델링하여 

적용한다. 이 논문에서는 4차 다항식으로 Y(x)를 Eq. (40)과 같이 

모델링 하였다. Eq. (40)에서 A는 진폭으로 Eq. (40)의 계수 a, b, c, 

d, e의 결정에 영향을 미치나 Eq. (39)의 분모/분자 항에 동일하게 

계산되기 때문에 상호 상쇄된다. 따라서 등가 EI 계산에는 영향이 

없다.
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(35)

에너지 등가법은 외팔보 젂체의 변형 에너지와 각 구갂별 변형 에너지의 합이 

동일하다는 가정을 이용하여 등가 EI를 계산하는 방법으로 이를 식으로 나타내면 Eq. 

(38)과 같다 (Rao 2004, Moon & Hong 2008). Eq. (38)에 외팔보 구갂별 영률 및 곾성 

모멘트인 Eqs. (36, 37)을 대입하여 정리하면 Eq. (39)와 같이 Fig. 8의 외팔보의 등가 EI가 

계산된다. Eq. (4)에서 Y(x)는 변위 함수로 일반해는 Eqs. (5, 8)과 같으나 계산의 

어려움으로 일반적으로 외팔보의 경계조건을 맊족하는 다항식 형태로 Y(x)를 모델링하여 

적용핚다. 이 논문에서는 4차 다항식으로 Y(x)를 Eq. (40)과 같이 모델링 하였다. Eq. 

(40)에서 A는 짂폭으로 Eq. (40)의 계수 a, b, c, d, e의 결정에 영향을 미치나 Eq. (39)의 

분모/분자 항에 동일하게 계산되기 때문에 상호 상쇄된다. 따라서 등가 EI 계산에는 

영향이 없다. 
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(36)

에너지 등가법은 외팔보 젂체의 변형 에너지와 각 구갂별 변형 에너지의 합이 

동일하다는 가정을 이용하여 등가 EI를 계산하는 방법으로 이를 식으로 나타내면 Eq. 

(38)과 같다 (Rao 2004, Moon & Hong 2008). Eq. (38)에 외팔보 구갂별 영률 및 곾성 

모멘트인 Eqs. (36, 37)을 대입하여 정리하면 Eq. (39)와 같이 Fig. 8의 외팔보의 등가 EI가 

계산된다. Eq. (4)에서 Y(x)는 변위 함수로 일반해는 Eqs. (5, 8)과 같으나 계산의 

어려움으로 일반적으로 외팔보의 경계조건을 맊족하는 다항식 형태로 Y(x)를 모델링하여 

적용핚다. 이 논문에서는 4차 다항식으로 Y(x)를 Eq. (40)과 같이 모델링 하였다. Eq. 

(40)에서 A는 짂폭으로 Eq. (40)의 계수 a, b, c, d, e의 결정에 영향을 미치나 Eq. (39)의 

분모/분자 항에 동일하게 계산되기 때문에 상호 상쇄된다. 따라서 등가 EI 계산에는 

영향이 없다. 
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에너지 등가법은 외팔보 젂체의 변형 에너지와 각 구갂별 변형 에너지의 합이 

동일하다는 가정을 이용하여 등가 EI를 계산하는 방법으로 이를 식으로 나타내면 Eq. 

(38)과 같다 (Rao 2004, Moon & Hong 2008). Eq. (38)에 외팔보 구갂별 영률 및 곾성 

모멘트인 Eqs. (36, 37)을 대입하여 정리하면 Eq. (39)와 같이 Fig. 8의 외팔보의 등가 EI가 

계산된다. Eq. (4)에서 Y(x)는 변위 함수로 일반해는 Eqs. (5, 8)과 같으나 계산의 

어려움으로 일반적으로 외팔보의 경계조건을 맊족하는 다항식 형태로 Y(x)를 모델링하여 

적용핚다. 이 논문에서는 4차 다항식으로 Y(x)를 Eq. (40)과 같이 모델링 하였다. Eq. 

(40)에서 A는 짂폭으로 Eq. (40)의 계수 a, b, c, d, e의 결정에 영향을 미치나 Eq. (39)의 

분모/분자 항에 동일하게 계산되기 때문에 상호 상쇄된다. 따라서 등가 EI 계산에는 

영향이 없다. 
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에너지 등가법은 외팔보 젂체의 변형 에너지와 각 구갂별 변형 에너지의 합이 

동일하다는 가정을 이용하여 등가 EI를 계산하는 방법으로 이를 식으로 나타내면 Eq. 

(38)과 같다 (Rao 2004, Moon & Hong 2008). Eq. (38)에 외팔보 구갂별 영률 및 곾성 

모멘트인 Eqs. (36, 37)을 대입하여 정리하면 Eq. (39)와 같이 Fig. 8의 외팔보의 등가 EI가 

계산된다. Eq. (4)에서 Y(x)는 변위 함수로 일반해는 Eqs. (5, 8)과 같으나 계산의 

어려움으로 일반적으로 외팔보의 경계조건을 맊족하는 다항식 형태로 Y(x)를 모델링하여 

적용핚다. 이 논문에서는 4차 다항식으로 Y(x)를 Eq. (40)과 같이 모델링 하였다. Eq. 

(40)에서 A는 짂폭으로 Eq. (40)의 계수 a, b, c, d, e의 결정에 영향을 미치나 Eq. (39)의 

분모/분자 항에 동일하게 계산되기 때문에 상호 상쇄된다. 따라서 등가 EI 계산에는 

영향이 없다. 
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에너지 등가법은 외팔보 젂체의 변형 에너지와 각 구갂별 변형 에너지의 합이 

동일하다는 가정을 이용하여 등가 EI를 계산하는 방법으로 이를 식으로 나타내면 Eq. 

(38)과 같다 (Rao 2004, Moon & Hong 2008). Eq. (38)에 외팔보 구갂별 영률 및 곾성 

모멘트인 Eqs. (36, 37)을 대입하여 정리하면 Eq. (39)와 같이 Fig. 8의 외팔보의 등가 EI가 

계산된다. Eq. (4)에서 Y(x)는 변위 함수로 일반해는 Eqs. (5, 8)과 같으나 계산의 

어려움으로 일반적으로 외팔보의 경계조건을 맊족하는 다항식 형태로 Y(x)를 모델링하여 

적용핚다. 이 논문에서는 4차 다항식으로 Y(x)를 Eq. (40)과 같이 모델링 하였다. Eq. 

(40)에서 A는 짂폭으로 Eq. (40)의 계수 a, b, c, d, e의 결정에 영향을 미치나 Eq. (39)의 

분모/분자 항에 동일하게 계산되기 때문에 상호 상쇄된다. 따라서 등가 EI 계산에는 

영향이 없다. 
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경 및 링레이저 자이로의 배치를 고려하여 정해지며 무게 m은 디
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M은 Eq. (33)을 이용하여 계산되고 무게 관련 계수 Mdx는 Fig. 6

에서의 각각 모델의 x 방향 이격거리와 Eqs. (27, 29, 30)의 각각 

모델의 무게와의 곱으로 Mdx=ma1dx1+ma2dx2+ma3dx3와 같이 계산 

가능하다. 이외에 λL은 Eqs. (20, 26)의 행렬식이 영이 되는 λL을 

구하면 된다. 이에 대한 시뮬레이션 결과를 그림으로 나타내면 

Figs. 9, 10과 같다. Fig. 9는 디더 스포크를 단순 외팔보로 모델링

한 경우 Eq. (20)의 λL에 대한 행렬식의 값이고 Fig. 10은 지지 외

팔보에 대한 결과이다. Figs. 9와 10에서 나타난 바와 같이 행렬식

이 0이 되는 지점의 λL 값을 구해보면 단순 외팔보의 경우 0.531

이고 지지 외팔보의 경우 0.564임을 확인할 수 있다. 이 값이 Eq. 

(11)에서 1차 고유 주파수를 계산하기 위한 계수로 이용된다.

디더 끝단에 물체가 부착된 경우의 경계조건을 결정하는 계수

를 이용하여 Eq. (40)의 계수를 구하면 Table 3과 같다. Table 3에

서 알 수 있듯이 경계조건에 따라 Eq. (40)의 계수가 많이 달라짐

을 확인할 수 있으며 이를 Eq. (39)에 대입하여 등가 EI인 (EI)eq

를 구할 수 있으며 이를 정리하면 Table 3의 마지막 열과 같다. 그

리고 디더 고유 주파수의 요구 조건인 800 Hz 이상을 만족하기 

위해 최종 설계된 수치는 Table 4와 같다. Table 4에서 단일 디더

를 구성하는 모델인 디더 스포크, 자이로 장착부 및 링레이저 자

이로에 대한 수치를 구분하여 표기하였다.

Table 3의 등가 EI와 Table 4의 디더 스포크에 대한 수치 그리

고 Figs. 1과 2의 λL 값을 Eq. (11)에 대입하여 구한 단일 디더의 고

유 주파수를 정리하면 Table 5와 같다. Table 5의 결과는 외팔보

Table 3.  Parameter of Eq. (40).

No. of model Type of cluster dither model Boundary condition
Parameter of Eq. (40)

(EI)eqa b c d e
1
2

Clamped-free
Eqs. (6a, b)
Eqs. (6a, 17, 18)

0
0

0
0

6
100

-4
-54

1
13

66.23
54.31

3
4

Clamped-supported
Eq. (13)
Eqs. (6a, 24, 25)

0
0

0
0

3
11

-5
-18

2
7

40.21
38.30
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의 종류 및 경계조건을 구분하여 정리하였으며 표에서 알 수 있

듯이 단일 디더의 형상에 따른 모델링 방법 및 경계 조건에 따라 

고유 주파수 계산결과가 많이 상이함을 확인할 수 있다.

Table 5의 계산 결과를 검증하기 위하여 M&S 도구인 

Solidworks를 이용하여 해석을 수행하였다. 해석을 위하여 Fig. 2

의 구성품과 동일한 구조 특성을 가지도록 각각의 구성품을 모델

링하였으며 Solidworks 기능적인 한계로 디더 스포크를 단순 외

팔보로 모델링하고 경계조건은 Eqs. (6a, b)만을 가정하여 시뮬

레이션을 수행하였다. Solidworks는 정적 해석 전용 도구로 동적 

해석을 위해서는 다른 M&S 도구가 요구된다. 향 후 동적 해석가

능 M&S 도구가 확보되면 Tables 5, 6의 2~4번 모델에 대한 추가 

M&S를 수행할 예정이다. Solidworks를 이용한 해석 결과를 그림

으로 나타내면 Fig. 11과 같다. Fig. 11에서 원형의 구조체가 자이로 

몸체와 동일한 관성 모멘트를 가지도록 설계된 의사 자이로 몸체

이다. 해석을 통하여 구한 최종 고유 주파수는 977.21 Hz로 Table 

5의 이론적으로 계산한 고유 주파수 1026.6 Hz와 약 49 Hz의 차

이가 발생한 것으로 나타났다. 이에 대한 원인을 상세 분석한 결

과 이론적으로 고유 주파수를 분석한 경우에는 자이로 몸체를 육

면체로 모델링하고 Eq. (32)를 이용하여 Jzz3을 계산하였다. 그러

나 Solidworks 에서는 자이로 몸체를 세부 모델링하여 Jzz3을 구

하였으며 이 값을 상호 비교한 결과 Solidworks에서 계산한 값이 

약 13.5% 큰 것으로 확인되었다. 이는 자이로 몸체에 부착된 전극, 

반사경 조립체에 의해 z축 관성 모멘트가 증가한 것으로 확인되

었으며 x, y축도 유사한 차이를 보였으나 관성 모멘트 값이 크지 

않아 고유 주파수 계산에 큰 영향을 미치지 않는 것으로 확인되

었다. Solidworks에서 계산된 자이로 몸체의 z축 관성 모멘트를 

이용하여 Table 5와 같이 단일 디더의 고유 주파수를 계산한 결

과를 정리하면 Table 6과 같다. Table 6의 1번 모델에서 이론적으

로 계산한 고유 주파수가 988.4 Hz이며 이는 Solidworks에서 구

한 고유 주파수와 약 11 Hz 차이가 발생하여 고유 주파수 계산 차

이가 크게 감소한 것으로 확인되었다. 이러한 결과는 Figs. 7과 8

Table 4.  Parameter values of designed cluster dither model.

Type of model Parameter of Eqs. (27-32, 35, 36) and Table 2

Dither spoke
Parameter L h m tb tp tf

Value 23.5 mm 15 mm 9.8 g 2 mm 0.3 mm 8 mm

M1

Parameter Jzz1 ma1 dx1 dy1 dz1 ψ
Value 1.548e-5 14 g 9 mm 3 mm 0 60o

M2

Parameter Jzz2 ma2 dx2 dy2 dz2 ψ
Value 3.362e-5 20 g 5 mm 10.5 mm 0 60o

M3

Parameter Jzz3 ma3 dx3 dy3 dz3 ψ/θ
Value 4.858e-5 71 g 1 mm 21 mm 9 mm 60o/64o

Table 5.  Natural frequency according to cluster dither model.

No. of model Type of cluster dither model Boundary condition Natural frequency from Eq. (11)
1
2

Clamped-free
Eqs. (6a, b)
Eqs. (6a, 17, 18)

1026.6
929.6

3
4

Clamped-supported
Eq. (13)
Eqs. (6a, 24, 25)

927.6
872.2

Fig. 9.  Determinant of Eq. (20). Fig. 10.  Determinant of Eq. (26).

Fig. 11.  M&S result of cluster dither.
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의 이론적 모델과 Fig. 11의 Solidworks 모델 간의 차이에 의해 발

생한 것으로 분석을 통하여 확인되었다. 이러한 결과로 판단할 

때 이 논문의 이론적인 분석결과가 타당하다고 사료된다.

설계된 단일 디더는 제작을 통하여 설계의 타당성 및 정상동

작 여부를 검증하기 위하여 Fig. 11과 같이 제작되었으며 이를 그

림으로 나타내면 Fig. 12와 같다. 제작된 단일 디더는 디더 구동 

전압을 가변하며 시험을 수행하였으며 시험을 통해 구한 단일 디

더 고유 주파수는 Fig. 13과 같이 디더 구동 전압에 따라 변하며 

약 852~868 Hz를 가지는 것으로 나타났다. 이러한 결과는 Table 

5의 1, 2번 모델 고유 주파수 계산 결과 및 Fig. 11의 Solidworks에

서 구한 고유 주파수 M&S 결과와 많은 차이가 있음을 보여준다. 

따라서 Table 3의 1, 2번 모델로 단일 디더를 모델링하는 것이 타

당하지 않은 것으로 확인되었다. 그러나 Table 5의 4번 모델로 가

정하여 이론적으로 구한 고유 주파수인 872.2 Hz와는 약간의 차

이는 발생하나 Fig. 13의 시험결과와 근접하는 값이 산출됨을 확

인하였다. 또한 Table 6에서 알 수 있듯이 Solidworks에서 구한 

자이로 몸체의 z축 관성 모멘트를 적용하는 경우 4번 모델 고유 

주파수가 849.7 Hz로 시험결과와 거의 동일함도 확인하였다. 이

러한 결과로 판단할 때 단일 디더는 Table 3의 4번 모델로 고유 

주파수 해석을 수행하는 것이 가장 정확함을 확인할 수 있었다.

5. 결론

이 논문은 단일 디더의 형상에 따른 고유 주파수 특성 분석 연

구 결과를 제시하였다. 이를 위하여 다양한 경계조건에서의 외팔

보 고유 주파수 계산식을 유도하였으며 해석의 용이성을 높이기 

위하여 단일 디더 1축을 디더 스포크 모델, 자이로 장착부 2개 모

델, 링레이 자이로 모델 합하여 총 4개의 모델로 나누고 이를 기

반으로 고유 주파수 해석에 필요한 수식을 새로이 유도하였다. 

새로 유도된 수식을 기반으로 링레이저 자이로의 락인 영역에 의

한 성능저하를 막기 위하여 단일 디더의 고유 주파수가 800 Hz 

이상이 되도록 단일 디더를 설계하였다. 설계된 단일 디더는 단

일 디더의 경계조건 별로 변수 값을 구하고 이를 적용하여 단일 

디더 고유 주파수를 이론적으로 분석하였다. 단일 디더 고유 주

파수 분석은 디더 스포크를 단순 외팔보 및 지지 외팔보로 모델

링하고 각각의 모델에 대하여 디더 스포크 끝단에 물체가 부착되

지 않은 경우 및 부착된 경우를 고려하여 총 4가지 경우에 대해서 

수행하였다.

이론적으로 분석한 고유 주파수의 정확성을 검증하기 위하

여 Solidworks 해석도구를 이용한 일부 형상에 대한 M&S 및 단

일 디더의 제작 시험을 통하여 구한 고유 주파수와 비교 분석하

였다. 비교 분석 결과 단일 디더는 지지 외팔보로 모델링하고 디

더 스포크 끝단에 물체가 부착된 경우의 경계조건을 적용하여 이

론적으로 해석했을 때가 가장 실제 시험결과와 유사함을 확인하

였으며, 이러한 결과는 이 논문에서 제시한 고유 주파수 특성 분

석 결과가 타당함을 검증하는 결과이다. 또한 이 논문에서 설계

된 단일 디더가 단일 디더의 고유 주파수 요구조건인 800 Hz 이

상을 만족하는 약 850 Hz의 고유 주파수를 가짐도 확인하였다.
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