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ABSTRACT

Monitoring the integrity of global navigation satellite systems is important to continuously and stably operate their navigation
systems. KF-RAIM has been developed to guarantee the integrity of high-precision navigation solutions such as PPP. This
paper presents a KF-RAIM algorithm with an OpenMP-based parallel structure. Compare with the serial structure, the
proposed structure provides the same protection levels and thresholds while reducing the KF-RAIM execution time. The use
of a look-up table can further decrease the execution time with only centimeter-level differences in the protection level. The
simulation results validate the effectiveness of the proposed structure in the view of the computation time.
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. INTRODUCTION Augmentation System (ABAS)Z & 4= it} (Lee 1986,
Parkinson & Axelrad 1988, Sturza 1988, Walter 2017, Pullen
2017). o] = ABASZ2] F £29] Receiver Autonomous Integrity
Monitoring (RAIM)2 57} 1} §lo] £417] G502 F44
= HAlsks 71 o2 Ax7EA] Wol AF-E 3L It (Lee 1986,
Parkinson & Axelrad 1988, Sturza 1988, Brenner 1996, Joerger
et al. 2014, Joerger & Pervan 2016, Gunning et al. 2018, Meng &
Hsu 2020, Bhattacharyya & Mute 2020, Wang et al. 2023).

27] RAIM-E range domainof|A] 3% & &4 2| 9] Zxj2 B

Global Navigation Satellite System (GNSS)-& o8] =719} A]

oAl =3k oA 3 AAEIS H3bst= Ao, Al Al
£ ol &3l AFgtollA $12] W A1t AR 5& AlFchs AL
o]t} GNSSE= u|=2] Global Positioning System (GPS), 2] A]
o}9] GLObal NAvigation Satellite System (GLONASS), 43 o
3to] Galileo, &=-2] BeiDousS st W&, 24} &X|/&%F
o Q1 Tz 5 ko Boleld BEE T gk GNSSO] 4

m l’ol' _L«.u

H 97 ARG AR QP A AR ok SefEwAl, GNSSS| 3
oIS Quit A=Y 4 QEAE Yl HEQl Ra4el
Zro] 2@ 51 3kA)|7} ]9l Th (Teunissen & Montenbruck 2017).
GNSSo] 2AKE BAsl] SIah W e A 0 7E A
Aol Al Alg&sH= FAof] w2t 24| Satellite Based Augmentation
System, Ground Based Augmentation System, Aircraft Based
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B AA EAZE Lol @ 55 71X 51= Residual Based RAIM
(RB-RAIM)®| HZ] A= Sitt RB-RAIMO] thAQl A+ 2

== Lee (1986)2] Range Comparison Method, Parkinson &
Axelrad (1988)2] Least-Squares Residual Method, Sturza (1988)
9] Parity Space Method So] Qich 1eju}, 44 As A%
+ position domainof|A] A 2= 7]o] 7]&2] RB-RAIM-E range
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Fig. 1. Sequence of the PPP and KF-RAIM.

domain®] AI}+E position domain® 2 Wslkst= 7o) @
Skal, o|uf] E4A 9l 7148 ARESIC} (Brenner 1996, Joerger et
al. 2014, Joerger & Pervan 2016, U.S. DoD 2020, ESA 2021). o]

2ok B9l Mk T o 2 WSl BAIS sidslo] 18l
position domainollA] 114 7}4lo] wet AN S D] A&
slo] FAAlS 7A]5H= Solution Separation RAIM (SS-RAIM)
o] W3l A7} v o]—S{i\:]- (Brenner 1996, Blanch et al. 2012,
Joerger et al. 2014, Joerger & Pervan 2016).

9] AFE] FEEHE Fle GNSSY ZE S S
AF25}o] Weighted Least-SquaresE 7|9ro 2 A18zto] 9
2] W A|ZF AR =8 =A51= Single Point PositioningS A}
aigith Y FHAE Aot s mE A7} Y
T]o], Wkdu}l =4 %9} Kalman Filter (KF)E 2235} Precise
Point Positioning (PPP)o] A|¢t=] it EAJof PPPL] RZAA]
& TAIBH] AT 719 dtEel E e, AT &
o] SS-RAIM-S &Hak5} KF based SS-RAIM (KF-RAIM)o]| 5F
A7} 288 E 31 Itk (Gunning et al. 2018, Meng & Hsu 2020,
Bhattacharyya & Mute 2020, Wang et al. 2023).

KF-RAIM 49 141=] FslE AlFshATE A
ol BE 13 7MWl hek FhHshE Atslol sk B3
{1l KPS A81] Thel A2l A1zho) Aok EAel
o} 2ol Aleln]e F Y 24lE GEs) AT A,
27} GNSS H Ao} Regional Navigation Satellite System
(RNSS)& B7Fste] ARGSIth o] ¢, 2 7Hd x9t9] 47t
3A —7P0P7l o Tl RAIME] AAAIZE B oA o] & S5}

7] 13k ¥ete] mido] P4Aolnt, o] & s dsty] 13 A 4
TFolMe #AE FAIAL ARHlE AFgSlo] AdES E3
5= HS ARSIt} (Gunning et al. 2018, Meng & Hsu 2020,
Bhattacharyya & Mute 2020, Wang et al. 2023). 2|, &3} A
AF TR oA T3 Axkk slo]] BiE z]g] WAl Tolslo] X
2] A|7HE ©E51 3= Q19it) (Choi et al. 2023). 121 RAIM
oA HEH A WS &8 A glck 2370 A%
il S7koke A2 589 21X o B3s}r] 25 RAIME] H
I A7 ke HES F ot Qi

0 %

B =Hojx] KF-RAIMS] oA Y e Wil 59
3 2] A7He BES A2 A st AREeE BHAle A
7P o] 47} E71ske|| whet 2]2] Al7to] Aoj| = HojlA, 1%k

M 2 B AL PSR A4S WY AR el
Aelsigict. PR 0 3 bkt Agtslor sk 4 B

AlgF, threshold 2 protection level (PL)2] 2|HZF} X|4=7) A
AbE WY HEsigiaL, ol B dargES o83 PLY ALt
2 &xF A sl 1 7ol tig B E X2 E el 35
B Y X2 227 APIQl OpenMPE AHE-SIITh &
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ﬂ*g} 2 e3g10] o} Look-Up Table (LUT)S AF&513Ich
A B0l e Al THEAol|A] A5 GPS LUL2 2% S
Ionosphere Free (IF) 4 mdlo] &85t A| o)A Ax}

oAl Aetshs HHE A2 F271 &2 AF -2 diH] 22

FEE M B2 3 £

X17h0] B B8 ek, = 2] TAL Ol KF-RAMS]
$412 Hel593, 3ol KF-RAME] e e $ere Lheh
sick 22l sgolis Agelold Aok wsiz, sy deo

2. KF-RAIM

PPP7E 2] 7 02 KFS AR, RA4 RAE 913
$THO 2 KF-RAIME 243t 4= 9ltt. Fig. 12 PPP Y KF-RAIM
o) a1 B2 AE LrERd Aol Fig. 12 olsfsk] $19)
@ 5 KF-RAIME) 448 2j3he}.

2.1 Kalman Filter

KFZ AM&317] 9J8llA] Egs. (1, 209 e Z2hA md 2 A4
oé]_g]_o]- XX‘] EIE“ g _IE:]@-E]-.

Xp+1 = FeXge + Wy, wy ~NV(0,Qp), (1)

Vi = HiXp + v, vie ~ V(0,Ry). (2)

o371 A, okl A2} ke Al7E IEA, xi= AFE] HE], Fi= Al o]
Y, wel Qe 2 LEAM A S W I FEANE, y= 55
HE] He 35 3, vo} RS 42 54 42 WE] 2 334
& et 283 N(p2)= B+ HE7E pol L 354 I

o] 381 7}eAQ B E vepdT]
KFe= AR 2 FAeta g, 27] A 344 2,9 271 &

2} 24 BE P 7k 2 a35ltt KF] time update= Egs. (3, 4)

Rik-1 = FiRpe-1)k-1» (3)
Pyji—1 = FiPy_1e—1Fy + Qp. (4)

AZIA &y 2 AP AR 8], Py S AR Q2F FAT S o]
;a1 sitk KFe] measurement update= Eqgs. (5-7)1} o] 43
e

-1
Ky = Pk|k—1H}1—(HkPk|k—1H}1— +Ry) (5)

Rk = Rppe—1 + Kg (Yk - h(ﬁklk—l)): (6)



Py = (I — KeHi) Py @)

A7 A %y 5 AR AdE] 2], Py E AFE &

11 gt} K= Kalman gaino] 12, k(- )+ H]A1S 3= gk4o|t}t Eq.
@)9] = B B HIAE BE T4 0

2.2 All-in-view Solution, Subset Solutions and
Solution Separations

Eq. (07 2] RE 2475 AHgslo] 73 Al 2442
“all-in-view solution”o]2}1 ka1, 113 7Pdo] wel AeiE =
A xutro g AL Al 24 2] & “subset solution”o]2}al sk 11
ZF 7Hdoltt 7HAl 914 AR 5 d5UE ol WAgE 7
o) Aol 23 il SRk SR RE S5 Sl
7

1
K = P HYT (H(”Pk HITHRD) @)
Rk = Regp-1 + K ( ¢ = AR 1)) 9)
P = (1= KOHP )Py (10)
A71A 9] HA (D 2 7Hd dd Aot i=0Y & e
A} all-in-view 7} o2t A2ttt Time update?] Ail=
S X9t BAVE GlonF Egs. (3, 499 AIE AMESHAIN,
measurement update®] ZAit= 13 7pdo] et 24 %] y,
% 92 H, 2% 28 FEAL B R Kalman gain K7} #ish2
Egs. (9, 10)3} Zo] |2 A4lsljoF T-& o 4 it} ©17]4] Eq.
(9)7} subset solutiong 2]=|glC},
KF-RAIMo| §24d& 7FAI517] 915 A4 FAI%FE “solution
separations”2} 11 s}, Eq. (11)3} Z+o] all-in-view solutioni}
subset solution®] o] 2 He] A o5k 4= glt}.

Axm |x,% x,g(2| (11)

o714 ofel kgl 9113} Q1 2o0lck. Qole] S1x)s) el
goll thSt solution separation®] #4H- Eq. (12)9} o] A4kt

ORI N
o] 7] A (ao)z% Eq. (7)o]] YR all-in-view solution®] A} @
2} ZEAFFE poll A qiA] 3, giA] Bo] Yiolx ( e
Eq. (10)of] LUrebH subset solution®] AFS @ 2} F-E-AF 33 plo]]
A qa) o, g o] £1491& Uekic,

2.3 Threshold

KF-RAIMo| A4t HA FAFLERE % {75 245)
= SHA| A& “threshold”g}al s}, B Lo A]+= Blanch et al.
(2012)°] 72 F25}0] Eq, (13)3} 2] A4t 3 AHSCY.

h - (Pr{FA,} .
) _ x-1 q @)
Tk,q =0 <T) Aak,q (13)
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A7IA O )= TFE ZFAIQE B9 AE] EiL F4old, his
37 7P o] grolm, FA = YA QE A qoflA] AA] Y1x] 24}
= 518 A el AT B SAFL 718XE dolA] 1%
© 32 sk ARAS 9u|gich KF-RAIM2 Eq. (1D)o]] YR
solution separation Ax.’7} Eq. (13)] YeRd threshold T,7= c}
3 3140 2 HEgict

2.4 Protection Level

PLL 9x|5l7} & F2A 9d
A ox}e] Agtolch. A 913

S ofsPt HES 4
o

L E Z}7} PL-E 2351 A]
T S AESHA 23 AR (HMDo] WS ghgo] AJAF0]
T LAY A 2L 9 GEF PLE ol Zzte)
274 913 3488 Eq. (4)9} Zo] vhehd 4 gick

Pr{HMI,)(1 - Pr(NM)) > Pr{|PEk,q| > PLg ) < T,f,2|}{(f)} Pe{s ), (14)

1=

=0

oy 7] A HMqu AR50 A A gof] tfst HMI AR, NM2 A|AH]
o] AAF 4 gl ARdE ekt 284 PE, = x5 Q1Y)
A g9 AA| 93] @2}, PL = RIS Q1A g2] PL, H0= iHA)
12 7S ojulsict A AE] FATE LAK 9 HEL 9
Asle] 4 ET} $2%0] el o) AR 4 AT, SHET
—’r— 12o] tfjs}] F+5F PL-& Z+Z} Horizontal PL (HPL)%} Vertical

L (VPL)E A o3t}
H 9§ LofA+&= Blanch et al. (2012)2] AAFE 2Fa15}e] Eq. (14)
£ Eq. (15)2} Zo] ZALg Be] ths) o] 84 daejgo =
PLE AL

h o)
Pr{HMI,} (1 - Pe{NM}) = 23 (PL(O) ) + z 3 (M) (15)

o —

=1 Okq
HPL3} VPLE ZFzh Egs. (16, 17)3} o] aizich.
I'IPLk= \/PL%((q 1)+PLk(q 2) (16)
VPLy = PLyq=3) (17)
3714 q=1,2,32 Z+ZF NED 2t2%9] N, E, Doj sfjgstct.
3. PROPOSED METHODS TO REDUCE
KF—=RAIM EXECUTION TIME
3.1 Parallel Structure
42} 27| FL29] KF-RAIM-L Fig, 20|41 2218+ 4= ¢Jt}. 7]

all-in-view solution2 AAFsF & 12F 714 1 ~ hol] tis)| subset
solution AF&, solution separation A4k, threshold 2%, PL AF
o e eAHoR 4Tt 7H S 47 FALEE T
371 2tel 471 35 SRR 42 el wlg g
A AlkE Eoled SAZE ek & =&elAlE Fig. 3o yEt
W OpenMPZ 0|5+ KF-RAIMS] ¥ 2] ukal L A|¢ksk
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PPP KF-RAIM
Get ' 3 Get subset Get solution Get threshold Get min/max
! el reshol
all-in-view [  solution |  separation > | protection level
| soution | 1| (@hyp) (1% hyp.) (% hyp) (1% hyp.)
3 Get su‘bset Get solufion Get threshold Get mfn/max
solution separation nd protection level
nd nd 2" hyp.) nd
2" hyp) (2" hyp.) (2" hyp.)
I I I I
Get subset Get solution Cot threshotd Get min/max Get min/max . i
e reshol et tecti
solution  f— separation  |— by | protection level —] protection level —» I;"' el‘ on
" hyp) " hyp) & byp) ™ hyp) @l hyp.)
Fig. 2. Sequential structure of the PPP and KF-RAIM
PPP KF-RATM (4) KEF-RAIM (B)
Get : l‘ Get subset Get solution Get threshold Get min/max | : !
v et thresho :
all-in-view [ solution [—P»| separation [ ah —| protection level
solution o @thyp) (1% hyp.) VP) @thypy |
' Get subset Get solution Get threshold Get min/max .
B el resno [ il
-  solution [ separation [P @ hyp) —P>| protection level = Get min/max Get final
: hyp. i+ | protection level > |
H (2" hyp.) (2™ hyp.) P (2" hyp.) HH P (all hyp) protection level |
' all hyp..
| Getsubset Get solution Get threshold Get min/max | !
| et threshol '
| solution [~ scparation [P & hyp) —1 protection level
" hyp) @™ hyp) v " hypy | 1

Fig. 3. Parallel structure of the PPP and KF-RAIM.

Fig. 3] “KF-RAIM (A)"= AH|$F5l= KF-RAIMO] L of|A| ok (M)} (B) Y9 WHE AT Ao A ATHS v aLste] A
HE Aok gYola, “KF*RAIM B &2t Aok 99 Qrohe 29| BldAdS BTt Fig. 39] (A) Y92 1 7ol
olm, “" hyp. "= A 1 7PdS ou|gich & =2ofA] At w}z} subset solution, solution separation, threshold, PL2] Z|TH
5l KF-RAIMO] 2 (A) 0303,.4 subset solution, solution St 2| &gk A RES HE A3, Fig. 39 (B) 9

separation, threshold 12|31 7Md W Z|cj/2| & PLE] A4S 31 2 7y 317 7o) 7|l REA Y EES Akl BE
ZF 7pdel wheba] WE Aejsla, (B) P9 o|xl © garelE < WHE H3ict
< o] &85k 2% PLO| AXEE ¢} A E]she 2T

OpenMPE o] &5} Wale] AL 34 & 7127} 9k R 3.2 Look-up Table of ® and %' Function
A MY AT GaE|Eo] A& FgFolojof gt Aol
SR WE A gaeEe] g Al7ke] S3] Aojof gtk 2 =RollA= KF-RAIMO] & AJ7HE 7s)7] gt 0
£ Zoltt o= sl A= A, 5718}, me] viz] 52 o2 o()d @'(-)2] LUTE 2H4d5te] ARE3I3iTh ()& 05
17 eHE|Er) pRIE DR WY e Ay o] A Al7to] 107k2] A48 AAIL A 500 SE3IAL, @'(-)E le-165-E 0.5
5] 2R b A Al7ke] A Zo] AFEAY HitHE 712 23 AA LA 500 SESISICH 3H2 AL A 2|7t

2] Albo] 57}* T 7] wiZe ID} A) °§°ﬂ°ﬂ*1 Aliksks A A Z7Fste] ARSI

o 1l S At

!
3l (A) 9] AU FS 3 7He] wfet

He) Azrol 24 hsAel
(B) ool = o) AL

Eq. (15)2] #oflA] 7t 7 7pdo
& Aiksle dto] 34k 7ol ot
AJ7ko] Zhh. TR EE (B) ole] 2
= A2l e o, A2 A7k A7) o
I3k @WE| =2 Qlslo] Azlalzbo] 27}

& =2ollA= Fig 391 (A)
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4. KF-RAIM EXECUTION TIME AND
PROTECTION LEVEL ANALYSIS

4.1 Simulation Environments

3akollA] A EE X2 dere] &84S BRIk 9l o
£3} 7-& 72.9] KF-RAIME S| 22| A|7H
29] &b 2] KF-RAIM, (i) Fig. 39] (A) 939 ¥ xg] KF-
RAIM, (iii) Fig. 32] (A), (B) %3] vi& x| KF-RAIM. X&] A|7+

hS Rk () Fig.



Table 1. Environment of system running PPP and KF-RAIM.

CPU AMD Ryzen 9 7900 12-Core Processor
GPU DDR5 16 GB
IDE  Visual studio 2022

Table 2. Execution time comparison for KF-RAIM (7 visible satellites) [ps].

Structure (1)+LUT (ii)+LUT (iii)+LUT  (ii)+Exact
T 70.838 22.609 22.745 23.205
T 0.194 0.224 0.236 0.232
Ts 1.869 1.935 10.323 4.244
Topoch 72.901 24.930 33.304 27.681

Table 3. Execution time comparison for KF-RAIM (8 visible satellites) [ps].

Structure ()+LUT (ii)+LUT (iii)+LUT  (ii)+Exact
T, 100.057 27.061 27.401 27.847
T 0.184 0.181 0.202 0.219
Ts 2.051 2.183 10.829 4.730
Topoch 102.291 29.424 38.432 32.796

Table 4. Total execution time comparison for KF-RAIM [us].

Description  (i)+LUT  (ii)+LUT  (iii)+LUT (ii)+Exact
Tooral 339.767  101.365  133.196  112.534
2 KF-RAIME dsh=t] 22l A7 S50k A2

oL 95t 24 %] ujl & 2 E 9] Shintotsukawao]] ¢ x|5F L=
A (STK200JPN)of|A] 4215 2022 119 8 18:00:00~18:59:59
F7hol| #fdsl= 12 744 9] GPS L1, L2 RINEX 3Y-& A5}
Qich ¥4 A H = JAXAO|A] A|55]= precise orbit/clock data,
Earth rotation parameter, differential code biasE AF&30 11,
GPS LI/L2 && A]of IF A3 X3S #8435} Zia]% 1]01 o
2 QIS exte] IxehE B Jct. 8| el iR A] 4171
9] 9%, &%, 7145, AJA| @4}, zenith tropospherlc wet delay,
float ambiguity S F45}93 20, PVA 2 &l Z 230c}

Elevation mask angle 15°2 A%s}o] sHH & 5}
7HA] 4 = T-NR WEEHTE 17 7HE GPS ¢
T PRk e, 2 14 8 9 2 /e 5
2 3 Aelsio] qel AkE B ]
2}u]El= Gunning et al. (2018)2] AF+E zFRslo] A
¥ X480 7H8A S Beks}7] Slel PLIH vl e
o] Alert Limit (AL)2 LPV-2000] w}z} HALE & o]x|= 2=
o] ALS 40 m, VALE R o]g]= -/Faéq ALS 35 mE AIAE
PPP= MATLABO & 7315}91 31, KF-RAIMS C++& J1315}0]
MEXZ #Aats] MATLAB qiToﬂAi 5% U A8Y5}9ict PPP
4! KF-RAIMO| 2§ 2172 Table 1of] UrER Tt
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v
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4.2 Simulation Results

KF-RAIMe] 32] A|7Hg v]2et AoRs 7ha] 914 4ol m
2} Tables 2-4of] A|A|5}3ATE Tables 2, 30f|A] LUTQ} Exacte] <]
vl 78z PLE] Alitoll 3.2 o] LUTE AHRRE At A3 A4k
e AT AE —4‘3]5‘}11]' Tables 2, 300 7,7, 73,7 oS A
331, Table 41| 7, A2t Tables 2, 39] 7,1, 7= ZFzt

> o

gl
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5 32
= H 18:57:36 18:57:40 18:57:44
3 \ Nov 08, 2022
!
ST\,
RO-U I
[ S —
0 s it s L
18:00:00 18:15:00 18:30:00 18:45:00 19:00:00
Time [s] Nov 08, 2022

(@

— = VPL(LUT)
VPL (exact)

0 .
18:00:00 18:15:00 18:30:00 18:45:00 19:00:00
Time [s] Nov 08, 2022
®)

Fig. 4. (a) Horizontal protection level and (b) vertical protection level.

Fig. 3041 (A) G2 M) A|Izte] B, (B) G FollA] “Get min/
max protection level (all hyp.)”o] 2] A|7+e] H4t, (B) G
X1 “Get final protection level’e] 22 A|7te] HHF& oln|slc}
Tables 2, 39] 1,2 KF-RAIMO| g} of Zujct 2 QB A& A]
7+e] tolrk. Table 49 7,2 AlEeo]41o 4] KF-RAIME 4~

Pl A F ATkl
Tables 2, 3& EH £} 28] FX “(D+LUT oA xﬂ F5t
£ HE AE 2 (+LUT'E H35190E o, e A7k <&
68.08%, 72.95% 7rASHS 31018k 4 Qi) o|= Fig. 39] (A) %
o] iHslef Jagt oW =& nEslulats FE5] X2 AlZt
o] 47] wiofl, HE A7 F2E A g3l Folsiths A& 9
njsid, 7 0] Z7tet E e 235 & 4 Qo jFof A
oksh= BiY xg] L2 “({)+LUT 0| A] Fig. 39] (B) JYA7lx] =
712 WE Hg 1 “Gi)+LUT'E WIS o, 2 X
TZ “OALUT’ Rt AfAE AE Bol xRt Aljtsh= HE A2
TZ HALUT Eot A 2] AJ7ko] =8 A& ERIT 4= Qi) o] &=
Fig. 39] (B) Qjodo] 4 7hdef me wslel HEalA ghe 7
Zoe AL olulsla, W) FROIME £3 2] FEE ALE
w A

sH= Ao fElak= AL UERATE Table 42 B & =5o

2305} ALte] 9o disted Alokshs W 8] LR “(i)+LUT”
€ =2k AF 2 “O+LUT” thiH] oF 70.17%, ﬁ“‘— FE 2]
Z “D+LUT” oiH] oF 23.90% 2] AJ7to] ZHATHS: gelgt 4

olct. A 744 EE’J/HO] QLHE]E—FL}‘: H éﬁl-: %’Eﬁ
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Z-LQ_ ql:lE' 7:1;(40Ho]: o]—l:]-%;ia =1y %1\1:]-

AQkshe & “(LUT'SE O()R &'()& A7 AXksH: 7

Z “(i)+Exact”Z B3} A= Fig. 4¢} Tables 2-40]] AA|5}%3

E]-. Fig. 40llA] HPE+= horizontal position error, VPE= vertical
position errorE eI 12, LUTS} exact= 7_}7* PL2] A4t
LUTZ A}83F AT} 24 Allshe 842 AH25 AL ofu]d
o} 18|31 PLO] 1A Aol ZAIGH & Sehgh A2 ATl AA|
et

Aotk TS AFESIGS o, AlEEold A1 1815:00 o]
3 7]%, HPL¥} VPL 2% LPV-2000] whe} A&3F HALY} VAL
BEF g & S £ 0, £ R0 K RANS| Yl 72
Ajre] FHE Floemg float solution 7|5k == R
PLS A&t} Integer ambiguity resolutionof] OJ}’S}O:] fixed
solutiong RHtH AlE|u|el59] PL A Fo] 7Hsaltt. LUT A
{2 o Hof whE PLO| A3k B Anp= LUTE AFLsH Aaf
7}18:57:40 Ao A] 25 Zof| thal] 2t} 5.230 cm, 18:39:51 A]A
ofl A 2 Fofl thsl X|cf 3721 cmo] QX7 UAYTHE ERI 4
olck. Teju ARk 227Ea() 2 &) A Ajtshs 1
Z tiu] 12 o E k9] 1 Alzke] OF 9.94%, 10.28% Wh 1, 4
A SR ALl 7120) & e AIRES oF 9.93% whE
< o 4 it} o]= Ajlel= KF-RAIME] 27} A alg] Fel
PL ©2}= 518 7FashA|Tt 2 2] A7) 2HE 7} FQ39F AJAH]
o 8517] felshs AL oulatct,

5. CONCLUSION

£ f=Ro 4 OpenMP 7]be] Y Xo] 725 2§ KF-
RAIMS L5k, 24 He] xoke] Me) ARk 3FH o=
usaloic. At WY A TaE 23 4 T2} ulas)
of SUTH thresholdsl PLS AMESHAA 2] He] A1 §o
SlslA B3k olok 7 B() D @7()9] A4k LUTE AHg:
3o} PL ol Al AElnle] Fo| ox48 AR, He] ARk
29 AE A oleie Anke 1Y Pl FA4
E19.E 918) KF-RAIMo] 275t $70]4], PLO| (0% B2
AR AARE He] Aol B Fat Alaslel] Aok 727 &
91 thero] @ 4 91 - AAR,
#3 TR GNSSeh RNSSE At o] o5 $14 1%
P e TR Quts AL FEstel 49
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