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Analysis of Guided-Missile Navigation Accuracy under Initial Alignment

Methods in Maritime Vertical-Launch Environments
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ABSTRACT

Guided weapon systems operating in maritime environments, such as the Vertical Launch System (VLS), form a core element
of modern naval capabilities. Although vertical launch provides an advantage in confined spaces, the dynamic motion of
the platform (ship) is directly transferred to the launch vehicle until just before launch, making navigation initialization
challenging. Weapon systems deployed on offshore platforms are continuously affected by environmental disturbances such
as waves, wind, and currents, as well as the ship’s propulsion and steering. Consequently, assuming a stationary initial state
when estimating the weapon'’s attitude using an Inertial Measurement Unit (IMU) introduces significant limitations. The
process of determining this initial attitude, known as alignment, is critical in IMU-based navigation systems. Errors in initial
attitude estimation directly propagate through the entire guidance phase. This leads to accumulated navigation errors and
ultimately degrades missile accuracy. Although Global Navigation Satellite System (GNSS) updates can correct navigation
solutions during the midcourse phase, IMU-based inertial navigation is indispensable during the early post-launch phase—
before GNSS data become available. Moreover, GNSS corrections may be unavailable in jamming or spoofing environments. It
is therefore important to accurately determine the initial attitude and rapid transition to inertial navigation mode to ensure the
required guidance performance of ship-launched missiles. This study compares and analyzes three representative alignment
methods applicable to maritime environments: one-shot alignment, one-shot mixed alignment, and shipboard transfer
alignment, under identical sea conditions. To quantitatively reflect the dynamic nature of the marine environment, simulation
data based on wave conditions were generated using the Marine System Simulator (MSS). The initial alignment accuracy of
each method was evaluated using these data, and the subsequent inertial navigation performance was analyzed. From the
obtained results, one-shot mixed alignment, which utilizes missile-mounted IMU acceleration data, exhibited large alignment
errors due to hull motion effects, while transfer alignment using attitude and velocity data from the Master Inertial Navigation
System (MINS) achieved higher accuracy. It was confirmed that in high sea state conditions, the transfer alignment method
utilizing continuous velocity and attitude information from the MINS provided the highest performance in estimating the
missile’s attitude.
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Fig. 1. One-shot mixed align algorithm.
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Table 1. Specification of SINS.

Sensor Parameter Value
Bias 0.5° /hr
ARW 0.04°/~y/hr
Gyroscope  Scale factor 100 ppm
Misalignment  0.02 mil
Output rate 200 Hz
Bias 200 pg
ARW 50ug /vhr
Accelerometer Scale factor 200 ppm
Misalignment ~ 0.02 mil
Output rate 200 Hz

Table 2. Specification of MINS.

Parameter Value
Attitude 0.7 mil
Velocity 0.05m/s
Time delay 20 msec
Output rate 12.5Hz

Fig. 3. Trajectory of simulation data.
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Fig. 4. Velocity of simulation data (NED).

Fig. 5. Attitude of simulation data.
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Fig. 6. Acceleration of simulation data (body frame).

Fig. 7. Estimated heading error of velocity/attitude matching transfer
alignment.

Table 3. Initial attitude accuracy without flexure and time delay.

Roll Pitch Heading

Alignment method [mil, 10] [mil, 16] [mil, 10]
One-shot align 1.77 1.77 1.77
Sea state 2 One-shot mixed align ~ 1.49 1.6 1.78
Transfer align 0.15 0.06 3.11
One-shot align 1.77 1.77 1.77
Sea state 5 One-shot mixed align 12.26  13.23 1.77
Transfer align 0.16 0.07 1.37
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Table 4. Effect of flexure and time delay.

Roll Pitch Heading

Error source [mil, 10] [mil, 10] [mil, 1o]

Sea state 2 Flexure 0.29 0.29 0.29
Time delay 0.05 0.05 0.05
Sea state 5 Flexure 1.90 1.90 1.90

Time delay 0.40 0.40 0.40
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Table 5. Initial attitude accuracy with flexure and time delay.
Roll Pitch Heading

Alignment method [mil, 16] [mil, 10] [mil, 1o]
One-shot align 1.79 1.79 1.79
Seastate 2 One-shot mixed align  1.52 1.63 1.78
Transfer align 0.33 0.30 3.12
One-shot align 2.63 2.63 2.63
Seastate 5 One-shot mixed align  12.41 13.24 1.81
Transfer align 0.43 0.43 1.43

Table 6. Inertial navigation error.

Horizontal error Vertical error

Alignment method [m, 2DRMS] [m, 2DRMS]
One-shot align 901.07 625.76
Seastate 2 One-shot mixed align 834.54 584.85
Transfer align 897.04 296.41
One-shot align 1297.91 847.28
Seastate 5 One-shot mixed align 4855.13 3805.97
Transfer align 489.88 316.56

Fig. 8. 3D flight trajectory of inertial navigation.
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