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ABSTRACT

The autonomous landing of multirotor UAVs on ship decks is challenging due to wave-induced deck motion, degraded

visibility, Global Positioning System (GPS) interference, and communication uncertainties. To address this, a reward design

framework based on reinforcement learning for vertical drone landing on a heaving shipborne platform using the Deep

Deterministic Policy Gradient (DDPG) algorithm is developed in this study. The training environment combines a simplified

vertical UAV dynamics model with wave profiles generated from the JONSWAP spectrum to enable randomized and realistic

heave motion in each episode. To enhance training stability and policy robustness, we introduce a distance-based reward, a

strict terminal penalty for failed landings, and hyperparameter scaling consistent with vehicle dynamics. MATLAB simulation

results show that the proposed reward design achieves stable policy convergence and landing performance across diverse

wave conditions. These results demonstrate the proposed reward model effectively improves the learning efficiency and

robustness of autonomous shipboard landing systems.
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Fig. 1. Overview of a reinforcement learning-based autonomous landing system.

A E20] 6 AT 5 SAo) nhE BE FE AP Helst  TE aoksla g AT Wk ARt
At S-S 13T A ElolEl S Shis}r]vt of2ie] A
Hlgo] 2| S7ksHe TAE QT &, F A2 25 A s
T} e 5 7o) H-go] ARk olks £AI7} k. 2. OI=2X uiAH
olg BAE FEsl7] el chFdt Aol Aol HPL
2 ool el AR Y 4 Ak AF YuleaDeep 21 HS BT

Reinforcement Learning, DRL) (Francgois-Lavet et al. 2018,

Wang et al. 2024) 7|5+ Hlo] 7|HHo] &1k §lc} (Amendola Jaletg2 ool EZE St Aeargsin w3 BARS
etal 2024). DRLE 874 7ho) A5AH8S 5ol 09 oahto]  Hrissls waroz 4ol 9% AN shashs el
Z o] £tk el E A-834 Q] A (policy)& St o} e AEAQ1 RIS Abefi(state) 331t 85 (action) 37t
£ 4 glor], AT ATAAL v, BRE SE WS A o] AXAL ASHoR ST A AN B Jhx P(value
% etto] Exfchs AFolME 2 Ao 5 Holi it function)& Ello]& FEHE 235}17] o129 AA| Alof Al A
Rodriguez-Ramos et al. (2019)2] 3 to]| A= fiducial markerS £51= g sHAI7) ok o83 EAIE slldslr] sl A= 414
580 Ao 91, 4] FEE F5to] ol Deep Deterministic 3 AT DRLO] EYHL L, AHUL BE3) 38 £ 7}
Policy Gradient (DDPG)] Afel o2 Abgal 441 Waat e | P48 2ARFOZA A A% Aol EAlME by

2 gZ ol S Eof 25 A=, st £5, HF Q1 sk&o] 7FsaliFth (Francois-Lavet et al. 2018, Wang et al.
ALl QoA ARE Shealoich Dot A Al W A 2004),

k2 A Ssh7] Al A Sl g Aol Ao = 2

HEAS AL25}it) Xie et al. (2020)9] ¢1tol| A= DDPGE At 2.2 DDPG Z12|&

golglont 42 sl SE AR Aolwl 7Hg wew 43

Aot DRLo| Y6l 2 5191 oni, 71 A3} PID tH] oF 10% = DDPG¥ actor-critic J-& 2] off-policy DRL &118]&0 2

2 25 HFES DAt actor= @z ZdeflollA] A42Q1 Aol Y& AY4J5|aL, critic
NE ATEL F2 UGS 5 2B WS, & Y AP 4] Q-valueS H7Hkh (Lillicrap et al. 2016).

2| &2 PIDU 21 517} £&of o&Esh= 7 (Wu et al. 2022) g A& Slsl B vl E9] A (target network) & AR5,

7} wot mtEof whE ZE2] 445} &% (heave motion)S 74 743 A w22 (replay buffer)E Foll A17H Aai/d o] AIA

Sl ThEA) ol S Qlck T SigF BABL Ul B AW A EAstel ATk BE, Aol B4 olxE F

A7 Ash SA el oJgk elgtol M om WS WhE  ste] A4 F7lel Aol BE BAE SaTkch DDPGE 2 A

F 5 A& A7t a7 E = Eokl

5} A% Wl oty VINE AR Aol W of, B A kS AR 23

Sick ofol] 2 e ZEe] Alsl 058 AT INA T A 9ol AFRHT glon], B ool sjAk oA e] 21y
oA E2o] 2] 2k5 W& DDPGE sh53lE 5 AAIBIN S 5T} 700] o & BI13h ool Ol-SsHHA S oA o] 2
o, AQHE Bap T2E B ChIR T RZCIME QP o Wadh+3 Alo] Bl H4stnAl Bt
25 52 5T BT

B eRe] 3L theat Pt 2ol A% eshst
DDPG9] 7] o] 28 A alslal, 38 AE o] S 7|ute & 3 2} 3. DDPG 7|t} 312 S5 31X Ay
& 25 A A PP AN 4gelae AE el
FE3}AY AL et sl Ak Y] g 2 ool A A9kske DDPG 7|4t 2k% f & & Fig. 13t
chekst Aluka] e oAl ZE5gieh npxjete 2 6ol AT Z Z¥o] =7 Al 7HA = A

https://doi.org/10.11003/JPNT.2025.14.4.421



RL Reward Design for Robust Drone Landing 423

Bokyung Choi et al,

- 317 (environment): E&9]

- of| o] E (agent):

—
o

™
oju

"o
o
~

<°

- u}k& YA 7] (wave generator): A1

el
7o

H

o

2 et

< 7o

ot 9 5} %71

o &

71 4]

Light

S

Al A Alelle

Al
=2

97] ojgr}. weA

Detection and Ranging (LiDAR), Radio Detection And Ranging

(RADAR), Depth Camera

Fig. 2. Example scenario of reinforcement learning-based drone landing.
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Fig. 3. Comparison of reward structure (a) Baseline reward (b) Proposed
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Fig.4. Actor network and critic network architecture.
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Table 1. WMO sea state code.

Sea state code Wave height [m] Characteristics

0 0 Calm (glassy)

1 0t00.1 Calm (rippled)

2 0.1t0 0.5 Smooth (wavelets)
3 0.5t01.25  Slight

4 1.25t02.5  Moderate

5 25t04 Rough

6 4t06 Very rough

7 6t09 High

8 9to 14 Very high

9 Over 14 Phenomenal
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Fig. 5. Wave height according to sea state.
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Table 2. Training hyperparameters for the DDPG algorithm.

Fig. 6. Comparison of sparse, distance-based, and scaled reward schemes in DDPG training.
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Table 3. Mean time-to-land (TTL) comparison between PID and the
proposed RL method.

. Mean TTL [s]
Techniques s
<5m Entire interval
PID 27.830 35.402
DRL (proposed) 6.470 11.030
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Fig. 7. Comparison of RL and PID landing trajectories below 5 m.

Fig. 8. Distribution of relative landing velocity.

Fig. 9. Scatter plot of drone-platform velocities at landing.
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