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ABSTRACT

This study evaluates the dynamic real-time navigation performance of the Satellite-Based Augmentation System (SBAS)
and Real-Time Kinematic (RTK) positioning through helicopter flight tests conducted along the K-UAM Grand Challenge
2nd phase (GC 2-1) demonstration route. In previous studies, flight tests were conducted. However, it was not possible to
transmit or receive real-time RTK correction data. Consequently, the RTK performance was analyzed using post-processed
raw measurements. In contrast, this study conducted thirteen helicopter flight missions along the Ara Waterway section (GC
2-1 demonstration route) connecting the Geyang Vertiport and the KIAST Drone Certification Center. During these missions
real-time correction data were received and applied. The flight tests covered all operational phases, including take-off, cruise,
and landing. Due to aircraft safety regulations and electromagnetic interference management standards, the GNSS antenna
was installed inside the aircraft cabin (beneath the canopy). Although this configuration could cause signal attenuation and
multipath effects, both navigation modes (SBAS and RTK) were operated under identical conditions to ensure a reliable
comparison of relative performance. The results show that the mean horizontal and vertical position errors of SBAS were
approximately 1.94 m and 1.62 m, respectively, while those of RTK were about 0.07 m and 0.09 m. This study experimentally
demonstrates the dynamic performance characteristics of real-time SBAS and RTK navigation in K-UAM flight environments
and is expected to contribute to the establishment of Navigation System Error (NSE) and Total System Error (TSE) standards
for navigation systems within UAM corridors and vertiports.
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2.1 GNSS 28 3z

2025 @A Global Positioning System (GPS)& & 327],
Global Navigation Satellite System (GLONASS)-& & 247],
European Global Navigation Satellite System (Galileo)& & 27
7], BeiDou Navigation Satellite System (BeiDou)-& & 447],
Quasi-Zenith Satellite System (QZSS)-& 57|7} &8 Zof 3l
t} (GLONASS OS PS 2020, BeiDou OS PS 2021, Galileo OS
SDD 2023, GPS GOV 2025, European GNSS Service Centre
2025). GPS 2 GLONASS+ 371 (GPS ICD 2025, GLONASS
ICD 2008), Galileo= 57} (Galileo ICD 2023), BeiDoux 47}
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(BeiDou ICD 2019)2] Zul4= HiE 2 A5 S £&31c} GPS,
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Table 1. Meteorological parameters for tropospheric delay.
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Average

Latitude (*) P,(mbar) T,(k) e)(mbar)  By(kim) Ao
15° or less 1013.25 299.65 26.31 6.30e-3 2.77
30 1017.25 294.15 21.79 6.05e-3 3.15
45 1015.75 283.15 11.66 5.58e-3 2.57
60 1011.75 272.15 6.78 5.39¢-3 1.81
75° or greater 1013.00 263.65 4.11 4.53e-3 1.55

Seasonal variation

Latitude (*) AP(mbar) AT(k) Ae(mbar)  AB(kim) AL
15° or less 0.00 0.00 0.00 0.00e-3 0.00
30 -3.75 7.00 8.85 0.25e-3 0.33
45 -2.25 11.00 7.24 0.32e-3 0.46
60 -1.75 15.00 5.36 0.81e-3 0.74
75° or greater -0.50 14.50 3.39 0.62e-3 0.30
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Fig. 1. K-UAM demonstration route (CNSi R&D project) (Specialized Map. 2024).
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Fig. 2. RTK reference and onboard equipment configuration.

Fig. 3. Navigation configuration of reference and rover stations for SBAS and RTK.
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Fig. 4. 2025/08/26 16:00 flight trajectory from flight tests.

Table 2. GNSS, SBAS, RTK flight test result.

Date/Time GNSS (1-Freq.) GNSS (2-Freq.) SBAS RTK
Hori.(m)  Vert.(m) | Hori.(m) Vert.(m) | Hori.(m) Vert.(m) [ Hori.(m) Vert.(m)
2025/08/26 16:00 4.398 4.574 1.631 2.393 1.610 1.449 0.065 0.105
2025/08/27 12:00 2.551 3.152 2.787 2.199 1.712 1.269 0.074 0.082
2025/08/27 16:00 2.580 3.682 1.191 2.014 1.400 1.572 0.051 0.048
2025/08/28 12:00 2.486 3.522 3.144 3.572 2.874 2.530 0.045 0.076
2025/08/28 16:00 3.232 4.655 1.998 2917 1.975 1.465 0.065 0.104
2025/08/29 12:00 1.672 3.894 1.354 2.001 1.691 1.506 0.112 0.151
2025/09/02 12:00 2.284 3.687 1.929 2.560 2.422 1.555 0.062 0.077
2025/09/02 16:00 3.061 6.516 2.041 3.449 1.545 2.563 0.061 0.089
2025/09/03 12:00 6.827 6.907 2.343 4.257 2.853 1.594 0.113 0.149
2025/09/03 16:00 4.343 4.367 1.426 2.531 1.940 1.512 0.061 0.068
2025/09/04 12:00 2.942 3.975 2.225 3.905 2.030 1.181 0.049 0.099
2025/09/04 16:00 2.393 6.389 1.635 5.341 1.134 2.182 0.075 0.107
2025/09/05 12:00 1.880 2.051 1.844 1.008 2.054 0.718 0.038 0.057
Table 3. Number of satellites for solution & availability.
Positioning solution ~ Avg.SVs ~ Num. of Obs. Availability (%) Remark
GNSS only (1 Freq.) 22.6 24607 100 C/No 240
GNSS only (2 Freq.) 14.9 16937 68.8 C/No 240, SV=10
SBAS 5.6 13288 54.0 C/No 240, SV=5
RTK 42.2 24269 98.6 -
27135193tk 2k Epoche] 2HgF AFE-2 25l Waypoint GrafNav 4~(1-Freq.), GNSS o]=Fu}4~(2-Freq.), SBAS, RTK &} R E9]
AZEYOIS AHg51o] FAE RIK WHAI02 Z1F AAS A4 AR 54 H2E 2 7he4e Bk 2 wige) 1% 5
stdch. g ALEdol Fxe) Jke] MElnlElF FHES  Hb FAE RIK AR A5 713 A4 ghe Abgsigion,
BRIk AR BAISHE or], AAZ el olel & olF JjukeE 2t g RE 2] Avele] 0x1E ARSI
TollA 71E A 4FE HA o2 F8E 3 Qlth (NovAtel 2025). t}. Zt @] REO] AAIZE ¥ 715 epoch 45 7R 08 718
EIHEER 23T AA 2 AolA mm #E9] 912 e d& AFET 23k Table 30 AAISHITE HIF F 7] 7150l
2 sIsisdck T FAT 2 sk} Y WEOR Qls) A5 Al o}
FHEZ AVEE V1F WA HES ol §slel 2 P BE W AR 9 A1E wo] ASIIon, o] 2T AF HAL] Ao
S % 47 93 0B AL BA SA71) AFR H L ol B wlole B4 7% AEsle] A1 A7 2 7
o]El & ©]-&-5to] Multi-GNSS T Fuba= Bl o] Fubs 912] 4 g ol it Al 232 A &slar dlofe] AAY & &
SHeg AHES19L00 SBAS, RTK BTl M Rabg vl 3 @ Aol Al=iidat nla B40) dThS shusigict o
SA19Ic). Fig 4% 2025\ 89 262 164] HRAIE AF, Table Tk, 2k &Py MPAPE AR 2AGSA], 914 49 Fol2 <l
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Fig.5. 1-Freq. 2-Freq. GNSS East/North/Up error.

Fig. 6. SBAS/RTK East/North/Up error.

Table4. Summary of dynamic navigation accuracy for each navigation mode.

T . Horizontal
Positioning solution

Vertical
CEP (50%) PE(50%) 2DRMS (95%)

GNSS only (1 Freq.) 1.303
GNSS only (2 Freq.) 0.819
SBAS 0.809
RTK 0.028

Horizontal Vertical
2DRMS (95%)
3.127 4.413
1.965 2.934
1.942 1.623
0.067 0.093

Fol- 25 U vEne 49 Pav e 2y gy a7 2
Aol AL Al 4502 W SBASS) Z$ %e)E
22 gfoo] 23 QHEILLE o] 82} 24017H B S AAlal
11 SBAS 2DRMS(95%) AEte = 4=A17] A4t A3} 43 1.350 m,
A kel E ALY AT 53 1292 me AR A e
Eo} 553 Al HRIsIgon, ol F Fal SBAS 441 Aol
2A7} 6 e-g ASsIsch

119 Aol A MSAS BAHH F9ko 2 AFET At 4
ﬁg 194 m, 424 162 me] AEHE 2 Ho] GNSS THE =9 thu] of

. S 2024 585 33]
o 23] Hlo“*l?ﬂ-‘ll $3]2] SBAS (MSAS, KASS) ZH47
1648 m, 4] 0967 m)e} vl 3IRE W 2 Hfel7} gl Aoz
Shol=| Qi) (Park et al. 2024).

NI, Table 20 AIAIE T S5} 33 B A of it
A UAM 2-& Alue] o] wet &7] 7]% A] 3lY 2 2pAlst

=)
0

4 FEER e,
SBAS #=Folli= w2 A Zsl8ith Table 2-04 75?4% uigto g 7t
& o] v AJF 7k % RMS ¥she Fig. 73} 2tk RTK
£ A =3 F7hellA] 0.05~012 m 9] oFF Al RMS 7He &
2519 01}, SBASE +1 m -&0] HEo] H2H Qi)
Table 3& 7} 3 R & —‘]Eﬂolﬂ Z2 2702 Axaw

Z Epoch & 7|9to 2 AlkbE 71848 Uehdith 71842 ;ﬂ
A Epoch & $IxI57} A 1551 Epoch H]&& Axkslgion,
Multi-GNSS @ Za}42 100% 7|22 2 3 of, RTKE 98.6%,

o]% Fuldl 68.8%, SBASE 54.0%2] 71AS Byt £ H]
PARol M= AA A g2 BE S 0] 83 o] 5Tt
B 7ol T Fata T oiH] ougle s TS Bol

i
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Fig. 7. Horizontal RMS variation per flight test for GNSS, SBAS, and RTK.
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