Journal of Positioning, Navigation, and Timing (J Position Navig Timing; JPNT)
Indexed in KCI (Korea Citation Index)
OPEN ACCESS, PEER REVIEWED
pISSN 2288-8187
eISSN 2289-0866

Single Antenna Based GPS Signal Reception Condition Classification Using Machine Learning Approaches

CONTENTS

Research article

Citation: Kim, S., Park, S., & Seo, J., 2023, Single Antenna Based GPS Signal Reception Condition Classification Using Machine Learning Approaches, Journal of Positioning, Navigation, and Timing, 12, 149-155.

Journal of Positioning, Navigation, and Timing (J Position Navig Timing) 2023 June, Volume 12, Issue 2, pages 149-155. https://doi.org/10.11003/JPNT.2023.12.2.149

Received on 08 May 2023, Revised on 26 May 2023, Accepted on 02 June 2023, Published on 30 June 2023.

License: Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/bync/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Single Antenna Based GPS Signal Reception Condition Classification Using Machine Learning Approaches

Sanghyun Kim, Seunghyeon Park, Jiwon Seo

School of Integrated Technology, Yonsei University, Incheon 21983, South Korea

Corresponding Author: E-mail, jiwon.seo@yonsei.ac.kr; Tel: +82-32-749-5833 Fax: +82-32-818-5801

Abstract

In urban areas it can be difficult to utilize global navigation satellite systems (GNSS) due to signal reflections and blockages. It is thus crucial to detect reflected or blocked signals because they lead to significant degradation of GNSS positioning accuracy. In a previous study, a classifier for global positioning system (GPS) signal reception conditions was developed using three features and the support vector machine (SVM) algorithm. However, this classifier had limitations in its classification performance. Therefore, in this study, we developed an improved machine learning based method of classifying GPS signal reception conditions by including an additional feature with the existing features. Furthermore, we applied various machine learning classification algorithms. As a result, when tested with datasets collected in different environments than the training environment, the classification accuracy improved by nine percentage points compared to the existing method, reaching up to 58%.

Keywords

global positioning system, signal reception condition classification, machine learning

References

Bai, X., Wen, W., & Hsu, L.-T. 2020, Using sky-pointing fish-eye camera and LiDAR to aid GNSS single-point positioning in urban canyons, IET Intelligent Transport Systems, 14, 908-914. https://doi.org/10.1049/iet-its.2019.0587

Bezdek, J. C., Chuah, S. K., & Leep, D. 1986, Generalized k-nearest neighbor rules, Fuzzy Sets and Systems, 18, 237-256. https://doi.org/10.1016/0165-0114(86)90004-7

Causa, F. & Fasano, G. 2021, Improving navigation in GNSSchallenging environments: Multi-UAS cooperation and generalized dilution of precision, IEEE Transactions on Aerospace and Electronic Systems, 57, 1462-1479. https://doi.org/10.1109/TAES.2020.3043543

Closas, P. & Fernandez-Prades, C. 2011, A statistical multipath detector for antenna array based GNSS receivers, IEEE Transactions on Wireless Commu-nications, 10, 916-929. https://doi.org/10.1109/TWC.2011.011111.100412

Friedman, J. H. 2001, Greedy function approximation: A gradient boosting machine, The Annals of statistics, 29, 1189-1232. https://www.jstor.org/stable/2699986

Groves, P. D., Jiang, Z., Skelton, B., Cross, P. A., Lau, L., et al. 2010, Novel multipath mitigation methods using a dualpolarization antenna, in Proc. ION GNSS, 21-24 Sept 2010, Portland, Oregon, pp.140-151.

Hsu, L.-T. 2017, GNSS multipath detection using a machine learning approach, in Proc. IEEE ITSC, 16-19 Oct 2017, Yokohama, Japan, pp.1-6. https://doi.org/10.1109/ ITSC.2017.8317700

Jia, M., Lee, H., Khalife, J., Kassas, Z. M., & Seo, J. 2021, Ground vehicle navigation integrity monitoring for multi-constellation GNSS fused with cellular signals of opportunity, in Proc. ITSC, 19-22 Sept 2021, Indianapolis, IN, USA, pp.3978-3983. https://doi. org/10.1109/ITSC48978.2021.9564686

Kim, S., Byun, J., & Park, K. 2022a, Machine learning-based GPS multipath detection method using dual antennas, in Proc. ASCC, 04-07 May 2022, Jeju, Korea, pp.691-695. https://doi.org/10.23919/ASCC56756.2022.9828175

Kim, S., Lee, H., & Park, K. 2021, GPS multipath detection based on carrier-to-noise-density ratio measurements from a dual-polarized antenna, in Proc. ICCAS, 1215 Oct 2021, Jeju, Korea, pp.1099-1103. https://doi. org/10.23919/ICCAS52745.2021.9648845

Kim, S., Park, J., Yun, J.-K., & Seo, J. 2020, Motion planning by reinforcement learning for an unmanned aerial vehicle in virtual open space with static obstacles, in Proc. ICCAS, 13-16 Oct 2020, Busan, Korea, pp.784-787. https://doi.org/10.23919/ICCAS50221.2020.9268253

Kim, S. & Seo, J. 2022, Support vector machine-based GPS multipath detection method, in Proc. IPNT Conference, 2-4 Nov 2022, Gangneung, Korea, pp.365-368. http:// ipnt.or.kr/2022proc/45

Kim, W., Son, P.-W., Park, S. G., Park, S. H., & Seo, J. 2022b, First demonstration of the Korean eLoran accuracy in a narrow waterway using improved ASF maps, IEEE Transactions on Aerospace and Electronic Systems, 58, 1492-1496. https://doi.org/10.1109/TAES.2021.3114272

Kouiroukidis, N. & Evangelidis, G. 2011, The effects of dimensionality curse in high dimensional kNN search, in Proc. Panhellenic Conference on Informatics, 30 Sept-02 Oct 2011, Kastoria, Greece, pp.41-45. https:// doi.org/10.1109/PCI.2011.45

Kubo, N., Kobayashi, K., & Furukawa, R. 2020, GNSS multipath detection using continuous time-series C/N0, Sensors, 20, 1-25. https://doi.org/10.3390/s20144059

Lee, H., Pullen, S., Lee, J., Park, B., Yoon, M., et al. 2022a, Optimal parameter inflation to enhance the availability of single-frequency GBAS for intelligent air transportation, IEEE Transactions on Intelligent Transportation Systems, 23, 17801-17807. https://doi. org/10.1109/TITS.2022.3157138

Lee, H. & Seo, J. 2020, A preliminary study of machinelearning-based ranging with LTE channel impulse response in multipath environment, in Proc. ICCEAsia, 01-03 Nov 2020, Seoul, Korea, pp.1-4. https://doi. org/10.1109/ICCE-Asia49877.2020.9277218

Lee, H., Seo, J., & Kassas, Z. 2022b, Urban road safety prediction: A satellite navigation perspective, IEEE Intelligent Transportation Systems Magazine, 14, 94106. https://doi.org/10.1109/MITS.2022.3181557

Liu, Y., Wang, Y., & Zhang, J. 2012, New machine learning algorithm: Random forest, in Proc. ICICA, 14-16 Sept 14-16 2012, Chengde, China, pp.246-252. https://doi. org/10.1007/978-3-642-34062-8_32

MacGougan, G., Lachapelle, G., Klukas, R., Siu, K., Garin, L., et al. 2002, Performance analysis of a stand-alone highsensitivity receiver, GPS Solutions, 6, 179–195. https:// doi.org/10.1007/s10291-002-0029-z

Misra, P. & Enge, P. 2001, The Global Positioning System: Signals, Measurements, and Performance (Lincoln, MA: Ganga-Jamuna Press)

Miura, S., Hisaka, S., & Kamijo, S. 2013, GPS multipath detection and rectification using 3D maps, in Proc. IEEE ITSC, 06-09 Oct 2013, The Hague, Netherlands, pp.1-7. https://doi.org/10.1109/ITSC.2013.6728447

Safavian, S. R. & Landgrebe, D. 1991, A survey of decision tree classifier methodology, IEEE Transactions on Systems, Man, and Cybernetics, 21, 660-674. https:// doi.org/10.1109/21.97458

Shen, N., Chen, L., Wang, L., Lu, X., Tao, T., et al. 2020, Sitespecific real-time GPS multipath mitigation based on coordinate time series window matching, GPS Solutions, 24, 1–14. https://doi.org/10.1007/s10291020-00994-z

Strode, P. R. R. & Groves, P. D. 2016, GNSS multipath detection using three-frequency signal-to-noise measurements, GPS Solutions, 20, 399-412. https://doi. org/10.1007/s10291-015-0449-1

Sun, R., Hsu, L. T., Xue, D., Zhang, G., & Ochieng, W. Y. 2019, GPS signal reception classification using adaptive neuro-fuzzy inference system, The Journal of Navigation, 72, 685-701. https://doi.org/10.1017/ S0373463318000899

Sun, R., Wang, G., Zhang, W., Hsu, L. T., & Ochieng, W. 2020, A gradient boosting decision tree based GPS signal reception classification algorithm, Applied Soft Computing, 86, 105942. https://doi.org/10.1016/ j.asoc.2019.105942

Suzuki, T., Nakano, Y., & Amano, Y. 2017, NLOS multipath detection by using machine learning in urban environments, in Proc. ION GNSS+2017, 25-29 Sept 2017, Portland, Oregon, pp.3958-3967. https://doi. org/10.33012/2017.15291

Wang, L., Groves, P. D., & Ziebart, M. K. 2012, Multiconstellation GNSS performance evaluation for urban canyons using large virtual reality city models, The Journal of Navigation, 65, 459-476. https://doi. org/10.1017/S0373463312000082

Xu, L. & Rife, J. 2019, NLOS and multipath detection using doppler shift measurements, in Proc. ION GNSS+2019, 16-20 Sept 2019, Miami, Florida, pp.4064-4075. https:// doi.org/10.33012/2019.17115

Yoon, H., Seok, H., Lim, C., & Park, B. 2020, An online SBAS service to improve drone navigation performance in high-elevation masked areas, Sensors, 20, 1-20. https:// doi.org/10.3390/s20113047

Zhu, N., Marais, J., Betaille, D., & Berbineau, M. 2018, GNSS position integrity in urban environments: A review of literature, IEEE Transactions on Intelligent Transportation Systems, 19, 2762-2778. https://doi. org/10.1109/TITS.2017.2766768

Author contributIons

Conceptualization, S. Kim, S. Park, and J. Seo; methodology, S. Kim and J. Seo; software, S. Kim and S. Park; validation, S. Park; formal analysis, S. Kim and S. Park; writing—original draft preparation, S. Kim and S. Park; writing—review and editing, J. Seo; visualization, S. Kim and S. Park.

Conflicts of interest

The authors declare no conflict of interest.