Citation: Song, J., Jeon, T., Kim, G., Park, S. H., & Park, S. G., 2023, Trend and Analysis of Protection Level Calculation Methods for Centimeter-Level Augmentation System in Maritime, Journal of Positioning, Navigation, and Timing, 12, 281-288.
Journal of Positioning, Navigation, and Timing (J Position Navig Timing) 2023 September, Volume 12, Issue 3, pages 281-288. https://doi.org/10.11003/JPNT.2023.12.3.281
Received on 09 May 2023, Revised on 12 June 2023, Accepted on 27 July 2023, Published on 30 September 2023.
License: Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/bync/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Jaeyoung Song, TaeHyeong Jeon, Gimin Kim, Sang Hyun Park, Sul Gee Park†
Maritime PNT Research Office, KRISO, Daejeon 34103, Korea
†Corresponding Author: E-mail, sgpark@kriso.re.kr; Tel: +82-42-866-3685 Fax: +82-42-866-3689
The International Maritime Organization (IMO) states that the recommended horizontal accuracy for coastal and offshore areas is 10 m, the Alert Limit (AL) is 25 m, the time to alert is 10 seconds, and the integrity risk (IR) is 10-5 per three hours. For operations requiring high accuracy, such as tugs and pushers, icebreakers, and automated docking, the IMO dictates that a high level of positioning accuracy of less than one meter and a protection level of 0.25 meters (for automated docking) to 2.5 meters should be achieved. In this paper, we analyze a method of calculating the user-side protection level of the centimeterlevel precision Global Navigation Satellite System (GNSS) that is being studied to provide augmentation information for the precision Positioning, Navigation and Timing (PNT) service. In addition, we analyze standardized integrity forms based on RTCM SC-134 to propose an integrity information form and generate a centimeter-level precise PNT service plan.
GNSS, integrity, protection level
Bisnath, S. & Collins, P. 2012, Recent developments in precise point positioning, Geomatica, 66, 103-111. https://doi.org/10.5623/cig2012- 023
Blanch, J., Liu, X., & Walter, T. 2021, Gaussian Bounding Improvements and an Analysis of the Bias-sigma Tradeoff for GNSS Integrity, In Proceedings of the 2021 International Technical Meeting of The Institute of Navigation, 25-28 January 2021, pp.703-713. https:// doi.org/10.33012/2021.17861
Cabinet Office 2022, Quasi‐Zenith Satellite System Interface Specification Centimeter Level Augmentation Service (IS‐QZSS‐L6–005)
Chang, X. W., Paige, C. C., & Perepetchai, V. 2001, Integrity methods using carrier phase, In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS 2001), Banff, Alberta, Canada, 5-8 June 2001.
Chang, X. W., Paige, C. C., & Studenny, J. 2000, Two carrier phase based approaches for autonomous fault detection and exclusion, In Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, 19-22 Sept 2000, pp.1895-1905
Feng, S., Ochieng, W., Moore, T., Hill, C., & Hide, C. 2009, Carrier phase-based integrity monitoring for highaccuracy positioning, GPS solutions, 13, 13-22. https:// doi.org/10.1007/s10291-008-0093-0
Gao, Y., Jiang, Y., Gao, Y., & Huang, G. 2021, A linear Kalman filter-based integrity monitoring considering colored measurement noise, GPS Solutions, 25, 1-13. https:// doi.org/10.1007/s10291-021-01086-2
Gunning, K., Blanch, J., Walter, T., de Groot, L., & Norman, L. 2018, Design and evaluation of integrity algorithms for PPP in kinematic applications, In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), Miami, Florida, 24-28 September 2018, pp.19101939. https://doi.org/10.33012/2018.15972
Hirokawa, R., Sato, Y., Fujita, S., & Miya, M. 2016, Compact SSR messages with integrity information for satellite based PPP-RTK service, In Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), Portland, Oregon, 12-16 September 2016, pp.3372-3376. https://doi.org/10.33012/2016.14794
IMO 2001, Revised Maritime Policy and Requirements for a Future Global Navigation Satellite System (GNSS), A.915(22)
Jokinen, A., Feng, S., Schuster, W., Ochieng, W., Hide, C., et al. 2013, Integrity monitoring of fixed ambiguity Precise Point Positioning (PPP) solutions, Geo-spatial Information Science, 16, 141-148. https://doi.org/10.10 80/10095020.2013.817111
Kim, E., Song, J., Shin, Y., Kim, S., Son, P. W., et al. 2022, Fault-Free Protection Level Equation for CLAS PPPRTK and Experimental Evaluations, Sensors, 22, 3570. https://doi.org/10.3390/s22093570
Khanafseh, S. & Pervan, B. 2010, New approach for calculating position domain integrity risk for cycle resolution in carrier phase navigation systems, IEEE Transactions on Aerospace and Electronic Systems, 46, 296-307. https://doi.org/10.1109/TAES.2010.5417163
Liu, J., Tang, T., Gai, B., Wang, J., & Chen, D. 2011, Integrity assurance of GNSS-based train integrated positioning system, Science China Technological Sciences, 54, 1779-1792. https://doi.org/10.1007/s11431-011-4395-z
Miya, M., Fujita, S., Sato, Y., Ota, K., Hirokawa, R., et al. 2016, Centimeter Level Augmentation Service (CLAS) in Japanese quasi-zenith satellite system, its user interface, detailed design, and plan, Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), Portland, Oregon, 12-16 September 2016, pp.2864-2869. https://doi.org/10.33012/2016.14644
Ochieng, W. Y., Feng, S., Moore, T., Hill, C., & Hide, C. 2010, User Level Integrity Monitoring and Quality Control for High Accuracy Positioning Using GPS/INS Measurements, Positioning (POS) Journal Information, 14, 2573-2583
Odijk, D., Zhang, B., Khodabandeh, A., Odolinski, R., & Teunissen, P. J. 2016, On the estimability of parameters in undifferenced, uncombined GNSS network and PPPRTK user models by means of S-system theory, Journal of Geodesy, 90, 15-44. https://doi.org/10.1007/s00190015-0854-9
Pervan, B., Chan, F. C., Gebre-egziabher, D., Pullen, S., Enge, P., et al. 2003, Performance analysis of carrier-phase DGPS navigation for shipboard landing of aircraft, Navigation, 50, 181-191. https://doi.org/10.1002/j.21614296.2003.tb00328.x
Peyret, F., Gillieron, P. Y., Ruotsalainen, L., & Engdahl, J. 2015, Better use of global navigation satellite systems for safer and greener transport, IFSTTAR, Bron, France, SaPPART White Paper COST TU1302. https://www.researchgate. net/publication/305724028_Better_use_of_Global_ Satellite_Systems_for_Safer_and_Greener_Transport
Rife, J., Pullen, S., Enge, P., & Pervan, B. 2006, Paired overbounding for nonideal LAAS and WAAS error distributions, IEEE Transactions on Aerospace and Electronic Systems, 42, 1386-1395. https://doi. org/10.1109/TAES.2006.314579
Rife, J., Pullen, S., Pervan, B., & Enge, P. 2004, Paired overbounding and application to GPS augmentation, In PLANS 2004. Position Location and Navigation Symposium, Monterey, CA, 26-29 April 2004, pp.439-446
RTCA 2006, Minimum Operational Performance Standards for Global Positioning System / Wide Area Augmentation System Airborne Equipment, RTCA DO-229D
Simon, J., Ostolaza, J., Moran, J., Fernandez, M., Caro, J., et al. 2012, On the Performance of Dual-frequency Multiconstellation SBAS: Real Data Results with Operational State-of-the-art SBAS Prototype, In Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012), Nashville, TN, 17-21 September 2012, pp.12981309. https://www.ion.org/publications/abstract. cfm?articleID=10343
Teunissen, P. J. G., Odolinski, R., & Odijk, D. 2014, Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles, Journal of geodesy, 88, 335350. https://doi.org/10.1007/s00190-013-0686-4
Wang, K., El-Mowafy, A., Qin, W., & Yang, X. 2022, Integrity monitoring of PPP-RTK positioning; Part I: GNSS-based IM procedure, Remote Sensing, 14, 44. https://doi. org/10.3390/rs14010044
Wang, K., El-Mowafy, A., Rizos, C., & Wang, J. 2021, SBAS DFMC service for road transport: positioning and integrity monitoring with a new weighting model, Journal of Geodesy, 95, article id.29. https://doi. org/10.1007/s00190-021-01474-z
Wu, J., Wang, K., & El-Mowafy, A. 2020, Preliminary performance analysis of a prototype DFMC SBAS service over Australia and Asia-Pacific, Advances in Space Research, 66, 1329-1341. https://doi.org/10.1016/ j.asr.2020.05.026
Wübbena, G., Bagge, A., & Schmitz, M. 2001, Network-based techniques for RTK applications, in GPS Symposium, GPS JIN, Tokyo, Japan, 14-16 Nov 2001.
Zalewski, P. 2020, Integrity concept for maritime autonomous surface ships’ position sensors, Sensors, 20, 2075. https://doi.org/10.3390/s20072075
Zhang, X. & Li, P. 2013, Assessment of correct fixing rate for precise point positioning ambiguity resolution on a global scale, Journal of Geodesy, 87, 579-589. https:// doi.org/10.1007/s00190-013-0632-5
Zhu, N., Marais, J., Bétaille, D., & Berbineau, M. 2018, GNSS position integrity in urban environments: A review of literature, IEEE Transactions on Intelligent Transportation Systems, 19, 2762-2778. https://doi. org/10.1109/TITS.2017.2766768
Conceptualization, S.G.P and S.H.P; methodology, J.S.; software, J.S., G.K. and T.J.; validation, J.S., G.K., T.J. and J.S.; formal analysis, J.S., G.K. and T.J.; investigation, J.S.; resources, S.G.P, J.S., T.J., and G.K; data curation, J.S., G.K and T.J.; writing— original draft preparation, J.S.; writing—review and editing, S.G.P; supervision, S.H.P; project administration, S.G.P; funding acquisition, S.H.P.
The authors declare no conflict of interest.