Citation: Lee, N., Park, H., Park, D., Byeon, B., & Kim, S., 2023, Joint Localization and Velocity Estimation for Pulse Radar in the Nearfield Environments, Journal of Positioning, Navigation, and Timing, 12, 315-321.
Journal of Positioning, Navigation, and Timing (J Position Navig Timing) 2023 September, Volume 12, Issue 3, pages 315-321. https://doi.org/10.11003/JPNT.2023.12.3.315
Received on 15 August 2023, Revised on 20 August 2023, Accepted on 26 August 2023, Published on 30 September 2023.
License: Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/bync/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Nakyung Lee1, Hyunwoo Park1, Daesung Park2, Bukeun Byeon2, Sunwoo Kim1†
1Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, Korea
2Avionics Radar System Team, Hanwha Systems, Yongin, Gyeonggi-do 17121, Korea
†Corresponding Author: E-mail, remero@hanyang.ac.kr; Tel: +82-2-2220-4822
In this paper, we propose an algorithm that jointly estimates the location and velocity of a near-field moving target in a pulse radar system. The proposed algorithm estimates the location and velocity corresponding to the outcome of orthogonal matching pursuit (OMP) in a 4-dimensional (4D) location-velocity space. To address the high computational complexity of 4D parameter joint estimation, we propose an algorithm that iteratively estimates the target’s 2D location and velocity sequentially. Through simulations, we analyze the estimation performance and verify the computational efficiency of the proposed algorithm.
radar, near-field, localization, velocity estimation
Belfiori, F., van Rossum, W., & Hoogeboom, P. 2012, 2D-MUSIC technique applied to a coherent FMCW MIMO radar, IET International Conference on Radar Systems (Radar 2012), Glasgow, UK, 22-25 Oct. 2012, pp.1-6. https://doi.org/10.1049/cp.2012.1564
Cai, T. T. & Wang, L. 2011, Orthogonal matching pursuit for sparse signal recovery with noise, IEEE Transactions on Information theory, 57, 4680-4688. https://doi. org/10.1109/TIT.2011.2146090
Chen, J. F., Zhu, X. L., & Zhang, X. D. 2004, A new algorithm for joint range-DOA-frequency estimation of nearfield sources, EURASIP Journal on Advances in Signal Processing, 2004, 105173. https://doi.org/10.1155/ S1110865704310152
Cui, M. & Dai, L. 2022, Channel estimation for extremely large-scale MIMO: Far-field or near-field?, IEEE Transactions on Communications, 70, 2663-2677. https://doi.org/10.1109/TCOMM.2022.3146400
de Carnières, G. M. D. G., Feuillen, T., Jacques, L., & Vandendorpe, L. 2019, Sparsity-driven moving target detection in distributed multistatic FMCW radars, 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Le gosier, Guadeloupe, 1518 Dec. 2019, pp.151-155. https://doi.org/10.1109/ CAMSAP45676.2019.9022656.
Grosicki, E., Abed-Meraim, K., & Hua, Y. 2005, A weighted linear prediction method for near-field source localization, IEEE Transactions on Signal Processing, 53, 3651-3660. https://doi.org/10.1109/TSP.2005.855100
Hao, W., Chen, G., Li, Y., & Hou, Y. 2023, Analysis of RCS characteristics in dynamic flight of stealth UAV, 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI), 26-28 May 2023, Changchun, China, pp.1208-1212. https://doi. org/10.1109/ICETCI57876.2023.10176877
Hassanien, A., Vorobyov, S. A., & Gershman, A. B. 2012, Moving target parameters estimation in noncoherent MIMO radar systems, IEEE Transactions on Signal Processing, 60, 2354-2361. https://doi.org/10.1109/ TSP.2012.2187290
He, Q., Blum, R. S., & Haimovich, A. M. 2010, Noncoherent MIMO radar for location and velocity estimation: More antennas means better performance, IEEE Transactions on Signal Processing, 58, 3661-3680. https://doi. org/10.1109/TSP.2010.2044613
Knudde, N., Vandersmissen, B., Parashar, K., Couckuyt, I., Jalalvand, A., et al. 2017, Indoor tracking of multiple persons with a 77 GHz MIMO FMCW radar, 2017 European Radar Conference (EURAD), Nuremberg, Germany, 11-13 Oct. 2017, pp.61-64. https://doi. org/10.23919/EURAD.2017.8249147
Lin, G. M. 2014, Research on shape stealth technology of military aircraft, Journal of Aerospace Science and Technology, 2, 26-33.
Oh, J., Choe, D., Yun, C., Kim, J., & Hopmeier, M. 2019, Towards the development and realization of an undetectable stealth UAV, 2019 Third IEEE International Conference on Robotic Computing (IRC), 25-27 Feb. 2019, Naples, Italy, pp.459-464. https://doi.org/10.1109/ IRC.2019.00097
Ritchie, M., Fioranelli, F., Griffiths, H., & Torvik, B. 2015, Micro-drone RCS analysis, 2015 IEEE Radar Conference, 27-30 Oct. 2015, Johannesburg, South Africa, pp.452456. https://doi.org/10.1109/RadarConf.2015.7411926
Shin, D., Kim, H., Gong, J., Jeong, U. & Jo, Y., et al. 2020, Stealth UAV through Coandă effect, 2020 Fourth IEEE International Conference on Robotic Computing (IRC), 9-11 Nov. 2020, Taichung, Taiwan, pp.202-209. https:// doi.org/10.1109/IRC.2020.00040
Skolnik, M. I. 1980, Introduction to radar systems (New York: McGraw-Hill).
Xu, L., Li, J. & Stoica, P. 2008, Target detection and parameter estimation for MIMO radar systems, IEEE Transactions on Aerospace and Electronic Systems, 44, 927-939. https://doi.org/10.1109/TAES.2008.4655353
Zhang, Z., Jiang, J., Liu, X., & Suo, H. 2023, Super-resolution localization of moving target based on improved compressive sensing algorithm, 2023 6th International Symposium on Autonomous Systems (ISAS), 23-25 June 2023, Nanjing, China, pp.1-6. https://doi.org/10.1109/ ISAS59543.2023.10164403
Conceptualization, N. Lee and H. Park; methodology, N. Lee, H. Park and S. Kim; software, N. Lee and H. Park.; validation, N. Lee, H. Park, D. Park, B. Byeon and S. Kim; formal analysis, N. Lee, H. Park and S. Kim; investigation, N. Lee and H. Park; resources, D. Park and B. Byeon; data curation, N. Lee, H. Park and S. Kim; writing—original draft preparation, N. Lee; writing—review and editing, N. Lee, H. Park and S. Kim; visualization, N. Lee, H. Park and S. Kim; supervision, S. Kim; project administration, S. Kim; funding acquisition, S. Kim.
The authors declare no conflict of interest.