Journal of Positioning, Navigation, and Timing (J Position Navig Timing; JPNT)
Indexed in KCI (Korea Citation Index)
OPEN ACCESS, PEER REVIEWED
pISSN 2288-8187
eISSN 2289-0866

A Survey on LEO-PNT Systems

CONTENTS

Research article

Citation: Seok, H.-W., Cho, S., Kong, S.-H., Joo, J.-M., & Lim, J., 2023, A Survey on LEO-PNT Systems, Journal of Positioning, Navigation, and Timing, 12, 323-332.

Journal of Positioning, Navigation, and Timing (J Position Navig Timing) 2023 September, Volume 12, Issue 3, pages 323-332. https://doi.org/10.11003/JPNT.2023.12.3.323

Received on 19 August 2023, Revised on 27 August 2023, Accepted on 02 September 2023, Published on 30 September 2023.

License: Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/bync/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Survey on LEO-PNT Systems

Hong-Woo Seok1, Sangjae Cho1, Seung-Hyun Kong1†, Jung-Min Joo2, Jongwon Lim2

1CCS Graduate School of Mobility, Korea Advanced Institute of Science & Technology, Daejeon 34051, South Korea

2KPS R&D Directorate, Korea Aerospace Research Institute, Daejeon 34133, South Korea

Corresponding Author: E-mail, skong@kaist.ac.kr; Tel: +82-42-350-1265 Fax: +82-42-350-1250

Abstract

Today, services using Positioning, Navigation, and Timing (PNT) technology are provided in various fields, such as smartphone Location-Based Service (LBS) and autonomous driving. Generally, outdoor positioning techniques depend on the Global Navigation Satellite System (GNSS), and the need for positioning techniques that guarantee positioning accuracy, availability, and continuity is emerging with advances in service. In particular, continuity is not guaranteed in urban canyons where it is challenging to secure visible satellites with standalone GNSS, and even if more than four satellites are visible, the positioning accuracy and stability are reduced due to multipath channels. Research using Low Earth Orbit (LEO) satellites is already underway to overcome these limitations. In this study, we conducted a trend analysis of LEO-PNT research, an LEO satellitebased navigation and augmentation system. Through comparison with GNSS, the differentiation of LEO-PNT was confirmed, and the system design and receiver processing were analyzed according to LEO-PNT classification. Lastly, the current status of LEO-PNT development by country and institution was confirmed.

Keywords

LEO, PNT, alternative-PNT, GNSS

References

Benzerrouk, H., Nguyen, Q., Xiaoxing, F., Amrhar, A., Nebylov, A. V., et al. 2019, Alternative PNT based on Iridium Next LEO satellites Doppler/INS integrated navigation system, In 2019 26th Saint Petersburg international conference on integrated navigation systems (ICINS), Saint Petersburg, Russia, 27-29 May 2019, pp.1-10. https://doi. org/10.23919/ICINS.2019.8769440

Chan, B. 2022, LEO PNT Constellation Progress & Technology Roadmap, In 2022 27th Space-Based Positioning, Navigation, and Timing National Advisory Board, 16-17 November 2022, Redondo Beach, California.

Chen, L., Lv, F., Yang, Q., Xiong, T., Liu, Y., et al. 2023, Performance Evaluation of CentiSpace Navigation Augmentation Experiment Satellites, Sensors, 23, 5704. https://doi.org/10.3390/s23125704

Cho, S., Seok, H. W., & Kong, S. H. 2023, MPCNet: GNSS Multipath Error Compensation Network via Multi-task learning, In 2023 IEEE Intelligent Vehicles Symposium (IV), Anchorage, Alaska, 4-7 June 2023, pp.1-6. https:// doi.org/10.1109/IV55152.2023.10186566

Cho, S. J., Kim, B. S., Kim, T. S., & Kong, S. H. 2019, Enhancing GNSS performance and detection of road crossing in urban area using deep learning, In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27-30 October 2019, pp.2115-2120. https://doi.org/10.1109/ITSC.2019.8917224

DARPA 2018, Broad Agency Announcement: Blackjack, Tactical Technology Office HR001118S0032

Dongfang Hour, China’s Ambitious Satellite Constellation Plan: Merging Hongyan and Hongyun into One SuperConstellation [Internet], cited 2023 Aug 26. available from: https://dongfanghour.com/chinas-ambitioussatellite-constellation-plan-merging-hongyan-andhongyun-into-one-super-constellation/

Ge, H., Li, B., Jia, S., Nie, L., Wu, T., et al. 2022, LEO enhanced global navigation satellite system (LeGNSS): Progress, opportunities, and challenges, Geo-spatial Information Science, 25, 1-13. https://doi.org/10.1080/ 10095020.2021.1978277

ESA, LEO-PNT [Internet], cited 2023 Aug 17, available from: https://www.esa.int/ESA_Multimedia/Images/2022/07/LEO_PNT

EUSPA 2022, EO & GNSS Market Report

Farhangian, F. & Landry, Jr, R. 2020, Multi-constellation software-defined receiver for Doppler positioning with LEO satellites, Sensors, 20, 5866. https://doi. org/10.3390/s20205866

Ferre, R. M., Lohan, E. S., Kuusniemi, H., Praks, J., Kaasalainen, S., et al. 2022, Is LEO-based positioning with mega-constellations the answer for future equal access localization?, IEEE Communications Magazine, 60, 40-46. https://doi.org/10.1109/MCOM.001.2100841

Günther, C. 2020, The Kepler Satellite Navigation System, Stanford PNT-Symposium 2020, Stanford, California, 28 October 2020

Hsu, L. T. 2017, GNSS multipath detection using a machine learning approach, In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16-19 October 2017, pp.1-6. https://doi.org/10.1109/ITSC.2017.8317700

Humphreys, T. E., Iannucci, P. A., Komodromos, Z. M., & Graff, A. M. 2023, Signal Structure of the Starlink KuBand Downlink, IEEE Transactions on Aerospace and Electronic Systems (Early Access), pp.1-16. https://doi. org/10.1109/TAES.2023.3268610

Iannucci, P. A. & Humphreys, T. E. 2020, Economical Fused LEO GNSS, In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, Oregon, 20-23 April 2020, pp.426-443. https://doi.org/10.1109/ PLANS46316.2020.9110140

Iannucci, P. A. & Humphreys, T. E. 2022, Fused low-Earthorbit GNSS, IEEE Transactions on Aerospace and Electronic Systems (Early Access), p.1. https://doi. org/10.1109/TAES.2022.3180000

Jardak, N. & Adam, R. 2023, Practical use of Starlink downlink tones for positioning, Sensors, 23, 3234. https://doi.org/10.3390/s23063234

Kassas, Z., Morales, J., & Khalife, J. 2019, New-age satellitebased navigation STAN: simultaneous tracking and navigation with LEO satellite signals, Inside GNSS Magazine, 14, 56-65. https://escholarship.org/uc/ item/7c403919

Kassas, Z. M., Kozhaya, S., Kanj, H., Saroufim, J., Hayek, S. W., et al. 2023, Navigation with Multi-Constellation LEO Satellite Signals of Opportunity: Starlink, OneWeb, Orbcomm, and Iridium, In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, 24-27 April 2023, pp.338-343. https://doi. org/10.1109/PLANS53410.2023.10140066

Ke, M., Lv, J., Chang, J., Dai, W., Tong, K., et al. 2015, Integrating GPS and LEO to accelerate convergence time of precise point positioning, In 2015 international conference on wireless communications & signal processing (WCSP), Nanjing, China, 15-17 October 2015, pp.1-5. https://doi.org/10.1109/WCSP.2015.7341230

Khalife, J., Neinavaie, M., & Kassas, Z. M. 2021, The first carrier phase tracking and positioning results with Starlink LEO satellite signals, IEEE Transactions on Aerospace and Electronic Systems, 58, 1487-1491. https://doi.org/10.1109/TAES.2021.3113880

Khalife, J. J. & Kassas, Z. M. 2019, Receiver design for Doppler positioning with LEO satellites, In ICASSP 2019 – 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12-17 May 2019, pp.5506-5510. https://doi.org/10.1109/ ICASSP.2019.8682554

Kozhaya, S., Kanj, H., & Kassas, Z. M. 2023, Multiconstellation blind beacon estimation, Doppler tracking, and opportunistic positioning with OneWeb, Starlink, Iridium NEXT, and Orbcomm LEO satellites, In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, 24-27 April 2023, pp.1184-1195. https://doi.org/10.1109/PLANS53410.2023.10139969

Kozhaya, S. E. & Kassas, Z. M. 2022, Blind receiver for LEO beacon estimation with application to UAV carrier phase differential navigation, In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, Colorado, 19-23 September 2022, pp.23852397. https://doi.org/10.33012/2022.18582

Lawrence, D., Cobb, H. S., Gutt, G., O’Connor, M., Reid, T. G., et al. 2017, Navigation from LEO, GPS World, pp.42-48. https://web.stanford.edu/group/scpnt/gpslab/pubs/ papers/Lawrence_GPSWorld_July2017.pdf

Li, B., Ge, H., Ge, M., Nie, L., Shen, Y., et al. 2019, LEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services, Advances in Space Research, 63, 73-93. https://doi.org/10.1016/j.asr.2018.08.017

Liddle, J. D., Holt, A. P., Jason, S. J., O’Donnell, K. A., & Stevens, E. J. 2020, Space science with CubeSats and nanosatellites, Nature Astronomy, 4, 1026-1030. https://doi.org/10.1038/ s41550-020-01247-2

Menzione, F. & Paonni, M. 2023, LEO-PNT Mega-Constellations: a New Design Driver for the Next Generation MEO GNSS Space Service Volume and Spaceborne Receivers, In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, 24-27 April 2023, pp.1196-1207. https://doi.org/10.1109/PLANS53410.2023.10140052

Miller, N. S., Koza, J. T., Morgan, S. C., Martin, S. M., Neish, A., et al. 2023, SNAP: A Xona Space Systems and GPS Software-Defined Receiver, In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, 24-27 April 2023, pp.897-904. https:// doi.org/10.1109/PLANS53410.2023.10139956

Miura, S., Hisaka, S., & Kamijo, S. 2013, GPS multipath detection and rectification using 3D maps, In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, Netherlands, 6-9 October 2013, pp.1528-1534. https://doi.org/10.1109/ITSC.2013.6728447

Prol, F. S., Ferre, R. M., Saleem, Z., Välisuo, P., Pinell, C., et al. 2022, Position, navigation, and timing (PNT) through low earth orbit (LEO) satellites: A survey on current status, challenges, and opportunities, IEEE Access, 10, 8397184002. https://doi.org/10.1109/ACCESS.2022.3194050

Prol, F. S., Kaasalainen, S., Lohan, E. S., Bhuiyan, M. Z. H., Praks, J., et al. 2023, Simulations using LEO-PNT Systems: A Brief Survey, In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, 24-27 April 2023, pp.381-387. https:// doi.org/10.1109/PLANS53410.2023.10140118

Reid, T. 2017, Orbital Diversity for Global Navigation Satellite Systems, PhD Dissertation, Stanford University.

Reid, T. 2020, Commercial LEO PNT for Autonomy, 14th Annual SCPNT Symposium, Stanford, California, 27-28 October 2020.

Reid, T., Banville, S., Chan, B., Gunning, K., Manning, B., et al. 2022, PULSAR: A New Generation of Commercial Satellite Navigation, In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, Colorado, 19-23 September 2022.

Reid, T. G., Neish, A. M., Walter, T., & Enge, P. K. 2018, Broadband LEO constellations for navigation, NAVIGATION: Journal of the Institute of Navigation, 65, 205-220. https://doi.org/10.1002/navi.234

Ries, L., Limon, M. C., Grec, F. C., Anghileri, M., PrietoCerdeira, R., et al. 2023, LEO-PNT for Augmenting Europe’s Space-based PNT Capabilities, In 2023 IEEE/ ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, 24-27 April 2023, pp. 329-337. https://doi.org/10.1109/PLANS53410.2023.10139999

Secchi, P. 2023, I nuovi Programmi della Navigazione Europea e l’approccio New Space nella Qualità, La QUALITÀ nell’AEROSPACE, Turin, Italy, 4-5 May 2023.

Shi, C., Zhang, Y., & Li, Z. 2023, Revisiting Doppler positioning performance with LEO satellites, GPS Solutions, 27, 126. https://doi.org/10.1007/s10291-023-01466-w

SpaceNews, DARPA downsizes Blackjack space experiment [Internet], cited 2023a Aug 26. available from: https:// spacenews.com/darpa-downsizes-blackjack-spaceexperiment/

SpaceNews, The coming Chinese megaconstellation revolution [Internet], cited 2023b Aug 28. available from: https://spacenews.com/the-coming-chinesemegaconstellation-revolution/

Su, J., Su, J., Yi, Q., Wu, C., & Hou, W. 2023, Design and performance evaluation of a novel ranging signal based on an LEO satellite communication constellation, Geo-spatial Information Science, 26, 107-124. https://doi.or g/10.1080/10095020.2022.2121229

Van Graas, F. 2023, Doppler Processing for Satellite Navigation, In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, 2427 April 2023, pp.365-371. https://doi.org/10.1109/ PLANS53410.2023.10140011

Xona Space Systems, Xona Broadcasts Demo PNT Signals from Low Earth Orbit [Internet], cited 2023 Aug 26. available from: https://www.xonaspace.com/xonademospntsignals

Yang, L. 2019, The Centispace-1: A leo satellite-based augmentation system, In 14th Meeting of the International Committee on Global Navigation Satellite Systems, Bengaluru, India, 8-13 December 2019. https://www.unoosa.org/documents/pdf/icg/2019/ icg14/WGB/icg14_wgb_S5_4.pdf

Zhang, P., Ding, W., Qu, X., & Yuan, Y. 2023, Simulation analysis of LEO constellation augmented GNSS (LeGNSS) zenith troposphere delay and gradients estimation, IEEE Transactions on Geoscience and Remote Sensing, 61, 1-12. https://doi.org/10.1109/TGRS.2023.3241956

Author contributIons

Conceptualization, H.S. and S.C.; formal analysis, H.S. and S.C.; investigation, H.S.; writing—original draft preparation, H.S and S.C.; writing—review and editing, H.S., S.C., J.J., and J.L.; supervision, S.K.; project administration, S.K.; funding acquisition, S.K.

Conflicts of interest

The authors declare no conflict of interest.